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Abstract
This paper presents a first production–ready version of a synchronization library for simulation of
distributed SystemC models. This synchronization library is the result of a consequent continuation
of a rudimentary library that has been used to demonstrate the fundamental feasibility of a concept
known as explicit lookahead [1] for the distributed simulation of RTL–like models. The basic idea
behind that concept was to make use of the fact that those models follow a strict (clocked) timing
regime where the clock frequency is a known constant.
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1 Background and Motivation

In [1] a mechanism has been described that allows
a more or less easy distribution of RTL–like Sys-
temC simulation models across multiple hosts. The
basic idea was the combination of conservative dis-
tributed discrete event simulation with the fact of a
well–known timing regime. That is, update rates of
all signals are known prior to the start of the sim-
ulation. This information is explicitly transfered to
the synchronization library and was termed Explicit
Lookahead.

The library described in [1] was intended as some
kind of proof–of–concept in order to demonstrate the
fundamental operation of such a library. It contained
various limitations that made it hard to use. Many of
those limitations have been eliminated in the current
version 1.1.0 of the library, which can be considered
production–ready.

In this paper a few details about the revised library
are discussed as well as the library API itself.

The document is organized as follows: After a short
review of the basic goals of the library there are
discussed various aspects that have been changed
and/or improved. Following that, a few particular
implementation issues are highlighted. Special em-
phasis is put on the support of arbitrary signal types
which is a fundamental new feature (section 5). Sec-
tion 9 provides a brief reference of the library API.
The paper concludes with a short discussion on fu-
ture tasks to be done and related work.

Although this paper is widely self–contained, it is
based on the work presented in [1]. Even though

there have been made a few changes in comparison
to the things presented that time, it is strongly rec-
ommended to be aware of the contents of the older
paper.

2 Terminology

The denotation of various important things discussed
within this paper is widely consistent with the one
used in [1]. For completeness, some important terms
are shortly defined herein as follows:

• simulation kernel —
Refers to a single SystemC application process.
A distributed SystemC model consists of multiple
simulation kernels. A more theoretical denotation
of a simulation kernel is a logical process, or LP.

• outbound signal —
A local signal that is feed to some remote sim-
ulation kernel (via an outbound synchronization
module) is denoted as outbound signal.

• inbound signal —
A local signal that is updated by some remote
simulation kernel (via an inbound synchroniza-
tion module) is denoted as inbound signal.

• outbound synchronization —
Outbound synchronization refers to the general
process of informing remote simulation kernels
about the state of local outbound signals.

• outbound synchronization module —
This is a logical construct of a module that is re-
sponsible for performing outbound synchroniza-
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2 A First Mature Revision of a Synchronization Library for Distributed RTL Simulation in SystemCTM

tion for a number of outbound signals. An out-
bound synchronization module (or in short out-
bound sync module) is connected with a remote
inbound synchronization module.

• inbound synchronization —
Inbound synchronization refers to the general
process of handling incoming signal notifications
and controlling the local simulation process.

• inbound synchronization module —
dito . . .

• synchronization cycle —
A synchronization cycle refers to the processing of
all inbound resp. outbound signals for a certain
simulation time.

3 Recapitulation of Basic Goals

The primary goal pursued by this development is the
creation of a library supporting the partitioning of a
large RTL–based SystemC simulation model into sin-
gle pieces. These pieces might be executed in parallel
resulting in a faster overall simulation.

Figure 1 illustrates an exemplary distributed system
involving three simulation kernels. (The figure has
been already discussed in [1].)
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Fig. 1: Exemplary Distributed System

The application writer/programmer has to be able
to create inbound and outbound sync modules as
needed. Each outbound/inbound sync module pair
acts as a tunnel and keeps the signals attached to
both modules consistent in their value. In particular,
the value of an inbound signal will follow the value
of its corresponding outbound signal. Referring to
figure 1, the signal A of the third simulation kernel
(LP3) will be updated regularly with the value of
signal A of LP1.

The update cycles of individual signals have to be
specified explicitly by the application writer/pro-
grammer. This is to be done once during the elabora-
tion phase of a SystemC simulation kernel. Although
this explicit timing specification appears to be quite
problematic, it is no major problem for RTL–like

simulation models. In [1] this concept has been dis-
cussed in detail.

The actual simulation model is to be influenced in
no way by the use of the synchronization library.

4 Important Library Changes
and Enhancements

The following subsections describe various aspects of
the synchronization library that have been changed
or newly introduced in comparison to the first proof–
of–concept design that has been presented in [1].

4.1 Slightly changed Simulation Se-
mantics

The distributed simulation semantics that has been
initially stated in [1] was:

The new value of an outbound signal that
changes at simulation time t becomes effec-
tive at the remote simulation kernel at the
same simulation time t. Outbound synchro-
nization for t completes in the third delta cy-
cle. Inbound synchronization for t completes
after the outbound synchronization for t has
completed (if there is any). All inbound sig-
nals will become updated within exactly one
delta cycle.

This semantics has been slightly changed (simplified,
actually):

The new value of an outbound signal that
changes at simulation time t becomes effec-
tive at the remote simulation kernel at the
same simulation time t. Both outbound and
inbound synchronization are performed within
a single delta cycle (normally in the third →
see section 4.3)

The initial requirement to carry out the inbound syn-
chronization strictly after outbound synchronization
is not needed anymore. This is because a synchro-
nization cycle takes only a single delta cycle now.

That time, it was necessary to execute inbound syn-
chronization after outbound synchronization because
it had to be guaranteed that outbound signals are not
manipulated by inbound synchronization before they
are synced out. As long as outbound synchronization
takes place in the same delta cycle as inbound syn-
chronization, the signal values won’t have changed.
This is because SystemC carries out the actual signal
value updates at the end of a delta cycle within the
so–called update–phase.

All in all, the modified semantics is compatible with
the application thread/method specification as de-
scribed in [1]. It has therefore no impact on existing
applications.
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4.2 Only one synchronization Thread

As described in [1], earlier versions of the synchro-
nization library used one SystemC thread for in-
bound synchronization and another one for out-
bound synchronization. This has been changed so
that there is running just one controlling thread now.
This thread schedules (and interleaves) individual in-
bound and outbound synchronization tasks. This
has two primary advantages:

• The whole synchronization cycle can be done
within a single delta cycle which brings in sev-
eral benefits.

• The synchronization tasks can be scheduled more
efficiently depending on data–availability from
the network connection.

4.3 Delta Cycle Relaxation

Initially, outbound synchronization has been done
within the third delta cycle of a certain simulation
time. This was necessary in order to allow at least
one trigger indirection in the system which is essen-
tial for the use of clocks. Refer also to [1], section 7.1.
In the same section it has been proposed to provide
support for starting the outbound synchronization
(and hence the inbound synchronization as well) in
an application–selectable delta cycle number.

Now, this has been implemented and the application
can set an according parameter.

Note: This feature does still not allow the distribu-
tion of clock signals!

4.4 Introduction of a Phase Shift
Mechanism

There has been introduced a feature termed Phase
Shift that is opening various interesting opportuni-
ties. This mechanism effectively violates the syn-
chronization semantics in a controlled manner as de-
fined by the application. The basic idea is as follow-
ing:

When outbound signals are attached to the li-
brary, a second timing parameter (the phase
shift) can be specified besides the cycle. This
phase shift offsets the individual synchroniza-
tion times for this signal accordingly.

As an example, a cycle time of 10ns and a phase shift
of 1ns results in synchronization times of 1ns, 11ns,
21ns, and so on. The phase shift parameter is treated
as a modulo with respect to the corresponding up-
date cycle and does only offset the synchronization
times. I.e. a cycle time of 10ns and a phase shift of
11ns results in synchronization times for the signal
of 11ns, 21ns, 31ns, and so on.

Well, what purpose does this feature serve? It can be
used to separate the signal synchronization from the
actual signal calculation in terms of simulation time
and not in terms of delta cycles. Consider an ex-
ample where some register outputs are feed through
some combinational logic that calculates the final
value of an outbound signal. This increases the level
of indirections accordingly. Instead of increasing the
relaxation parameter (see section 4.3) we could spec-
ify a slight phase shift. So we don’t have to care
about the number of indirection levels anymore.

Yet another application is the distribution of clock
signals. Effectively, the phase shift can be used to de-
fine priorities. That is, signals with a smaller phase
shift are synchronized earlier. Consider another ex-
ample that is clocked by a certain frequency (say
100Mhz, or 10ns cycle time). This clock is to be
generated within a single simulation kernel and dis-
tributed to other kernels. The clock signal would be
synchronized every half clock period (i.e. with a cy-
cle of 5ns) and all other signals in the whole model
would be synchronized every clock period (i.e. with
a cycle of 10ns) and a phase shift of say 1ns.

Though, it is still needed that every kernel knows
about the actual clock rate as it has to specify the
right update cycle for outbound signals.

Note: Although this mechanism violates the syn-
chronization semantics in a controlled way, it is ab-
solutely conform to the modeling of RTL systems.
From a physical point of view the phase shift does
nothing more than introducing a clock–to–output de-
lay.

4.5 Slightly changed Module Desig-
nation Policy

The library presented in [1] used the following logical
scheme for determining which outbound sync module
is to be connected with which inbound sync module:

• Each inbound sync module receives a designator
that is unique in a global context (i.e. unique
within the whole distributed application).

• Each outbound sync module receives a designator
that is unique in a global context as well.

• Each outbound sync module receives an informa-
tion to which simulation kernel it has to be con-
nected.

• During module connection, inbound and out-
bound sync modules with matching designators
are mated together.

This scheme contains an inconsistency. The require-
ment for globally unique designators is absolutely
necessary when the simulation kernels have an N:N
relation (i.e. each kernel is connected to each other
one). But when not all kernels know from each other,
it is easily possible to construct valid scenarios where
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4 A First Mature Revision of a Synchronization Library for Distributed RTL Simulation in SystemCTM

more than one inbound or outbound sync module
carry the same designator.

In order to remove this inconsistency, the connection
scheme has been slightly changed:

• Each inbound sync module receives a designa-
tor that is unique in a local context (i.e. unique
within the corresponding simulation kernel).

• Each outbound sync module receives a designator
that is also unique in a local context.

• Each outbound sync module receives an informa-
tion to which simulation kernel and to which in-
bound sync module located in the specified sim-
ulation kernel it has to be connected to.

In the context of module designation, this allows to
consider individual simulation kernels more decou-
pled from the whole distributed application. As an
interesting side effect, it also opens the door for pro-
prietary simulation kernel executables that can be
easily plugged into other simulation applications.

4.6 Support for Arbitrary Signal
Types

The library does support any signal type now rather
than only double. This includes user–defined types
as well. Even more, this does not only include sim-
ple, flat types such as simple structs without point-
ers. The library does provide necessary fundamental
support to deal with arbitrary abstract and complex
signal type structs and classes. Although the library
cannot provide such a support out–of–the–box for all
unknown types, it can be easily customized.

The introduction of this important feature required
a fundamental internal reorganization of the library.
More details on this can be found in section 5.

4.7 Extended Time Support

While the first experimental version of the library
supported only a granularity of one micro second for
outbound signal update cycles, any arbitrary time
can be specified now. These times can be specified
either in form of a previously created sc_time object
or as double/sc_time_unit pair.

In addition, each simulation kernel can make use
of arbitrary simulation time resolutions and default
time units. Though, the simulation resolution of a
given kernel needs to be sufficiently high for handling
inbound signals. When an outbound signal changes
at a rate that is below the resolution of the according
remote inbound sync module (resp. the correspond-
ing simulation kernel), this will fail, obviously.

Such error conditions will be detected and reported
within a consistency check (see section 4.8).

4.8 Introducing Consistency Check

In order to guarantee a flawless synchronization op-
eration, a signal consistency check has been intro-
duced. This consistency check is carried out for in-
dividual outbound/inbound sync module pairs and
ensures that various requirements are met.

The whole check is carried out during the elaboration
phase before the actual simulation starts. Hence, it
does not introduce significant runtime penalties.

More details on this consistency check can be found
in section 6 later in this document.

4.9 Introducing Flow Control

Most distributed simulation models will have a
closed–loop nature. That is, each simulation ker-
nel will somehow depend from each other (directly
or indirectly). As a result of this dependency, all
simulation kernels will uniformly advance in time so
that no one will be significantly ahead in time com-
pared to others. This can be quite different in case
of open–loop simulations such as in simple producer–
consumer scenarios.

Figure 1 actually contains such an open–loop rela-
tion involving simulation kernels 2 and 3. As LP2
depends on no other kernel, it could possibly gener-
ate signals significantly faster than they can be pro-
cessed by LP3. As a result, LP2 is much more ahead
of LP3 in simulation time.

Although such condition is principally not seman-
tically problematic it rises up some practical issues
such as:

• Increased CPU and network load. Hence, the
faster progressing simulation kernel could draw
performance from the slower ones that have more
work to do, actually.

• In case of (potentially) endless simulations the
simulation time of the faster progressing simula-
tion kernel might overflow. This could lead to
some unpredicted behavior which can terminate
the whole simulation prematurely.

Therefore a flow control mechanism has been inte-
grated in order to prevent such an aggressive pro-
ceeding. This flow control is rather simple. Out-
bound sync modules, and hence the whole associated
simulation kernel, are allowed to be maximally a cer-
tain amount of synchronization cycles ahead of the
remote inbound sync module. The amount of cycles
can be specified by the application by changing an
according library parameter (default value is 10).

4.10 Restriction to TCP/IP only

Early library designs took some first preparations
for supporting different communication media, per-
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spectively. This support consisted of a medium–
parameter in corresponding library calls. In fact,
only TCP/IP was supported that time.

The library presented herein supports only TCP/IP
as well. However, the formal support for other me-
dia has been removed temporary. The primary rea-
son for this decision is the fact that the old way of
specifying information related to specific communi-
cation media directly in the application code is not
very elegant anyways. It has been found much more
flexible when both the actual simulation kernel and
information related to kind and parameters of the
communication medium become separated. This al-
lows to change some parameters (i.e. port numbers
and host names in case of TCP/IP) without the need
to recompile the application itself.

Of course, the general idea to support arbitrary com-
munication media has not been dropped. Merely, the
formal support has been delayed into a future mech-
anism based on a configuration file. Details of this
mechanism need to be worked out.

4.11 Logical Library Appearance

The appearance of the library has slightly changed in
comparison to the library discussed in [1]. There are
three classes now which are organized in a so–called
factory model. Figure 2 illustrates the dependencies
in a simplified diagram.

class sc_dfsync_out class sc_dfsync_in

class sc_dfsync

signals
outbound

attach

constructor module
sync

outbound
create create

inbound
sync

module stuff
global
other attach

inbound
signals

(primary library)

(outbound sync modules) (inbound sync modules)

constructor constructor

Fig. 2: Basic Class Structure

The class sc_dfsync represents the synchroniza-
tion library as a whole. The two other classes
represent outbound resp. inbound sync modules
(sc_dfsync_out and sc_dfsync_in). Instances of
sc_dfsync_out and sc_dfsync_in can only be cre-
ated by calling member functions of sc_dfsync. At-
taching individual signals is done by directly calling
member functions of the according class. Although
it is equivalent from a functional point of view, this

solution has been found more clean than the previous
single–class approach.

Note that the context of the primary class sc_dfsync
is completely static. That is, it is not possible to
create more than one instance of the library.

In addition, all functions and publicly available
structures have been defined within a C++ name
space called dfsync.

More details of the library functions can be found
later in this paper.

Note: This class structure is just a logical struc-
ture of the external appearance that is relevant for
the application writer/programmer. In fact, the ac-
tual library classes and related stuff are hidden by a
mechanism also known as Cheshire Cat.

4.12 Optimized Signal Processing

Although not visible to the outside, the processing
of inbound and outbound signals has been improved
significantly. Signals are managed in lists on a per–
synchronization–module basis. Operations on these
lists have been optimized by making use of some so-
phisticated mechanisms. These mechanisms take ad-
vantage of the specific characteristics of the list op-
erations according their special nature.

There have been made no benchmarks how much
these optimizations bring quantitatively. But for-
mally they reduce the overhead for signal list mod-
ifications significantly. In fact, under special (not
very unlike) scenarios this overhead does even not
depend on the signal count at all.

5 Handling of Arbitrary Signal
Types

One of the most crucial parts of the library is the sup-
port of signals with arbitrary types. When it comes
to the wire or a low–level data transmission, signal
values are to be transferred as simple blocks of bytes.
So it is required to convert the current value of a sig-
nal into a plain binary block on one side, transmit
it, convert it back into the signal type, and update
the SystemC signal with it. In general, this concept
is also known as Serialization/Deserialization.

5.1 Type Support in regular Commu-
nication Libraries

In ordinary communication libraries such as MPI [2],
the support of different types is an important feature
as well. Whenever a message is to be transferred, the
application specifies a void pointer for the data as
well as a type identifier. MPI supports inherently a
number of intrinsic types and knows how to serialize
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6 A First Mature Revision of a Synchronization Library for Distributed RTL Simulation in SystemCTM

them. This does even include type conversion for
heterogeneous architectures.

Special user–defined types such as structs have to be
registered with the library during runtime. That is,
the application tells the library how a certain struc-
ture is composed out of existing known data types.
Finally, the outline of such a registered structure is
stored in a so–called typemap that holds all relevant
information. For instance: There is a double located
at offset 0, then there is an int at offset 8, then a
char at offset 12, etc. Based on this information the
MPI library can handle the type correctly.

Clearly, this mechanism forbids the use of complex
types containing pointers. Objects of such types have
to be flattened before they can be sent (the reverse
operation is needed during receive). This conversion
has to be done explicitly by application code and
disfigures it therefore.

In any case, such a mechanism appears to be al-
most unusable for a SystemC synchronization li-
brary. While one can imagine that there is provided
support for registering user–defined structures just
like in case of MPI, this is impossible for more com-
plex types. This is because in a SystemC model the
communication happens implicitly as there are no
send/receive calls.

However, C++ provides powerful mechanisms that
allows the support of arbitrary complex types. This
is discussed in the following sections.

5.2 How to Serialize/Deserialize Sig-
nal Values?

In case of intrinsic C types such a serialization is triv-
ial: The value of a variable of a certain type can be
accessed by simply casting its pointer to a character
array and read or write a number of bytes depending
on the size of the type.

There is no difference when the type is a simple, flat
struct or class. “Simple and flat” means that the
struct contains only a number of variables of intrin-
sic types or other simple and flat structs. A class can
contain in addition constructors and member func-
tions etc. But they are not relevant here as they are
not related to the state of the object. Like the in-
trinsic types, those types span across a consecutive
number of bytes in memory and can be accessed by
casting according pointers into a character array as
well.

It is getting problematic when it comes to really com-
plex and abstract classes and structs that contain
pointer variables. Obviously, it does not make sense
to carry around those pointers. So those kinds of
types cannot be handled in a generic way as it is
possible for the other kinds discussed above. Even
worse, there is no generic mechanism to serialize or
deserialize such types. In that point, every type is
individual and cannot be supported out–of–the–box

by any library — the meaning of the internal type
structure cannot be guessed.

However, when the library cannot provide a direct
support for those types, it can at least provide ap-
propriate mechanisms allowing the extension of the
library.

When it is coming to different types, the template
concept of C++ becomes very important. Hence,
the synchronization library makes extensive use of
this feature. But actually, this statement should be
slightly corrected: The public header files comple-
menting the library use them extensively.

5.3 Anonymifying Signal Types

A crucial point for dealing with arbitrary signal types
is to introduce some kind of anonymification. That
is, when the actual library cannot be prepared for all
particular kinds of types, it must not be interested
in the type and its peculiarities at all. All it needs
to know of a certain signal type is

• the byte–count of the serialized value

• a function used to read (serialize) and write (de-
serialize) a signal value

With regard to the latter one, the use of so–called
functors has been found very useful. These functors
can be used for hiding type–specific functionality be-
hind type–unspecific functions. This is exactly what
is needed here.

There are two kinds of functors involved:

• A signal–write functor TFunctor_w that encapsu-
lates a function for updating a signal value from
a plain serialized character array.

• A signal–read functor TFunctor_r that encapsu-
lates a function for reading a signal value and se-
rializing it into a plain character array. A second
function for determining the current size of a the
serialized signal value is included as well. Later
we will see what purpose this function does serve.

Listing 1 shows exemplary the functor used for writ-
ing signal values. This code is based on [4] and has
been slightly adapted to the needs of this application.

The details of this code are not to be discussed here
(refer to [4] instead). All it does is to encapsulate a
type–specific member function of a class TClass that
accepts a pointer to a character array. This func-
tion can be called by making use of a type–unspecific
function (or operator () in this case).

The class TClass and its member function that is
carrying out the actual signal update and whose
pointer is stored in the functor does finally depend
on the according signal type. Details about this class
are discussed next.
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� �
1 class TFunctor w {
2 public :
3 virtual void operator ()(char∗ array)=0;
4 };
5
6 template <class TClass>
7 class TSpecificFunctor w
8 : public TFunctor w {
9 private :

10 void ( TClass : :∗ fpt )(char∗);
11 TClass∗ pt2Object ;
12 public :
13 TSpecificFunctor w(
14 TClass∗ pt2Object ,
15 void(TClass : :∗ fpt )(char∗)
16 ) {
17 pt2Object = pt2Object ;
18 fpt= fpt ;
19 };
20
21 virtual void operator ()(char∗ array ) {
22 (∗pt2Object .∗ fpt )( array ) ;
23 };
24 };� �

Listing 1: Functor Classes

5.4 Providing Support for individual
Types

So far, the basic support of arbitrary types has been
discussed. That is, when the library wants to read
a signal value into a plain character array in order
to send it out, it just calls a function that is stored
inside the functor that is kept along with other infor-
mation about the signal. The same applies for up-
dating a signal value. What remains to be discussed
is how these functors are set up.

There is a general template class named
functorize class. This class provides two mem-
ber functions functorize inbound signal() and
functorize outbound signal() that are responsi-
ble for handling inbound and outbound signals. Ini-
tially, there is no implementation code behind that
class. This code has to be provided by template
specializations of functorize class for the desired
types.

The two member functions of the functorize class
are responsible for carrying out the following tasks:

• Set a type identifier for the according type. This
is mostly only interesting for all known predefined
types (see below). All other types receive a spe-
cial identifier marking them as unknown.

• Set a clear–text type name for type–identification
purposes. This is not needed for the known types
as they can be identified using the type identifier.

• Set the size for the serialized signal value so that
the library knows how much bytes it has to han-
dle. In case of directly supported (known) Sys-
temC types this specifies the width of the vector.
The size can also be set to zero which means the
serialized signal value can have an arbitrary size.

• Create and initialize the according functor so that

it wraps the right serialization or deserialization
functions. The serialization/deserialization func-
tionality is to be provided by according classes.

The library provides a number of specializations for
various known types (see below). User–defined tem-
plate specializations can also be provided by includ-
ing an according header file after the header file of
the synchronization library. This makes the library
very flexible as it can be customized easily.

The following subsections discuss the handling of var-
ious types in more detail.

5.4.1 Built–in C Types and simple flat UDTs

As shortly discussed in section 5.2, those types can
be handled rather easily by doing some casting acro-
batics. Because of their similarity, they are handled
by the same mechanism. That is, they utilize one and
the same specialization of the functorize class. In
fact, they do not utilize a specialization at all but use
the default implementation.

Note: This means that every signal type with no
specialization will be handled in that way. This leads
to serious problems when the signal type contains
pointers nonetheless!

Listing 2 shows the implementation of the according
functorize inbound signal() function.� �

1 template < typename T >
2 TFunctor w∗ functorize class<T>::
3 functorize inbound signal(
4 sc signal<T>& signal,
5 int& signal type,
6 size t& signal type size,
7 const char∗& signal type name
8 ) {
9

10 signal type = determine signal type( signal );
11 signal type size = sizeof(T);
12 signal type name = typeid(T).name();
13
14 deserialize flat<T>∗ deserialize object;
15 TSpecificFunctor w< deserialize flat<T> >∗
16 write functor;
17
18 deserialize object =
19 new deserialize flat<T>( &signal );
20
21 write functor =
22 new TSpecificFunctor w< deserialize flat<T> > (
23 deserialize object,
24 &deserialize flat<T>::do deserialize
25 );
26
27 return write functor;
28
29 }� �
Listing 2: functorize inbound signal() for flat
Types

The signal type is determined (line 10) using a small
helper function that compares the formal type T
against all known intrinsic types using typeid().
In case of an UDT, there is returned a special ID
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marking unknown types. Type size and type name
is determined as shown.

The actual functor is created and initialized in lines
21–25. As the functor needs to be initialized with
the right parameters for signal value deserializa-
tion, there has to be created an according object
(deserialize object, lines 18/19). This object
is here from the template class deserialize_flat.
The definition of this class is shown in listing 3.� �

1 template < typename T >
2 class deserialize flat {
3 protected:
4 sc signal<T>∗ my signal;
5 public:
6 // The constructor just stores the signal pointer.
7 deserialize flat( sc signal<T>∗ signal ) {
8 my signal = signal;
9 }

10 void do deserialize( char∗ new value ) {
11 my signal−>write( ∗( (T∗)new value ));
12 }
13 };� �

Listing 3: Class deserialize flat

As it can be seen, this deserialization class is fairly
simple. The constructor just stores the signal pointer
and the do_deserialize() member function casts
the plain character array into the according type and
writes it into the signal.

The corresponding functionality for handling of out-
bound signals (i.e. functorize_outbound_signal()
and the class for serialization) is almost identical and
does not need to be discussed in detail here.

5.4.2 Types brought by SystemC

There is provided support for all special SystemC
types. These types fall in several different categories
each of which requiring different serialization/deseri-
alization methods.

Values of sc_bit and sc_logic are externally repre-
sented by single ASCII characters. The serialization
function makes use of the to_char() method pro-
vided for both types. This is at least necessary for
sc_logic, as there is no numerical representation for
’X’ and ’Z’. Deserialization is a simple assignment,
as both types support an assignment operator for
char.

Values of type sc_lv<> are represented by a NULL–
terminated ASCII string that is extracted via
to_string()/c_str(). Similar as for sc_logic, the
string handling is needed because of ’X’ and ’Z’.

The integer types sc_bigint<>, sc_biguint<>,
sc_int<>, sc_uint<>, and sc_bv<> as well as
the fixed–point types sc_fixed<>, sc_ufixed<>,
sc_fix, and sc_ufix can be represented in a com-
pact binary format. In fact, values are extracted for
serialization in blocks of 32 bits using the range()
and to_uint() functions. Deserialization is done

similarly.

The “fast” fixed–point limited precision Sys-
temC types sc_fixed_fast<>, sc_ufixed_fast<>,
sc_fix_fast, and sc_ufix_fast are represented
internally (in SystemC) as double and hence are
treated externally as double as well by making use
of the to_double() method. The cannot be safely
accessed with the range() and to_uint() functions
because they are not bit–true when their size exceeds
the precision of double.

The basic schemes of the functorization classes as
well as the classes for serialization/deserialization of
the SystemC types follow the same principle that is
used for the flat types. So there is no need to show
them up here.

5.4.3 Special Types with flexibly sized Val-
ues

An interesting class of types are those whose values
have no specific fixed size. A very simple example
is the class string that is provided by the standard
C++ library. When reading the signal value, the
synchronization library needs to know the current
value size so that it can prepare accordingly sized
buffers etc. As shortly mentioned in section 5.3, the
functor mechanism for reading signals provides a sec-
ond function intended to determine the current value
size. So before the signal value is read into a plain
character array, the library can determine the cur-
rent value size.

Note that the size determination is not needed in
case of fixed–sized types and the according function
pointer can be set to NULL.

As an example, the synchronization library in its
current revision provides an header file containing
according functionality for the handling of string
types. Although this type is a little bit unusual for
SystemC signals it is working fine.

Note: Note that SystemC is normally not prepared
for dealing with string as signal type. In order to
use string, there needs to be provided an additional
sc_trace() function. Refer also to [9] page 98.

5.4.4 Unknown arbitrary complex UDTs

For all kinds of types not discussed so far there have
to be provided separate header files with according
template specializations for functorize_class as
well as specific serialization/deserialization classes.
The header file supplying support for the string
class serves as an excellent example for own types.

5.5 Far–reaching Capabilities

Perspectively, the use of the template concept for
providing type–specific templates is very powerful
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in view of portability and platform interoperability
(although this is not that important right now as
the synchronization library is exclusively available
for x86 architectures).

As an example, imagine a little–endian and a big–
endian machine and the particular type int. When
such and int is transferred from one machine to
the other, this will fail because of different endi-
aness. But one could provide a specialization for int
that takes care about the situation and makes use of
(whatever) well–defined external representation for
int. In addition, instead of using typeid().name()
for type name determination some unmistakable
clear text such as ¨32 Bit Integer¨ could be used.
In the end, the actual synchronization library just
serves as some kind of tunnel transporting anony-
mous blocks of bytes from one simulation kernel to
another one.

Although the library is currently well aware about
the intrinsic types as well as the SystemC types and
is principally able to hide such conversions, The ac-
cording specializations could be also changed so that
the library treats those types as UDTs.

5.6 Automated Template Specializa-
tion Generation?

As described in section 5.1, an MPI application has
to register special data types with the MPI library.
This is a nasty task that has to be done once at
the beginning. In case there are complex types
with pointers involved, these types have to be serial-
ized/deserialized by the application every time they
are transmitted. This is an even more nasty task.

Well, as described above, in case of the synchroniza-
tion library such a registration and serialization is
not a part of the actual simulation model code. Nev-
ertheless the creation of according template special-
izations is required at least for types with pointers.
Although this code is not part of the actual simula-
tion model, it’s creation can be considered “nasty”
as well.

As for MPI, once there has been developed an in-
teresting framework that simplifies the handling of
complex types [3]. In particular, there is a tool called
AutoMap that creates MPI data types from C struc-
tures. This is done by analyzing the source code. In
junction with another tool called AutoLink, complete
dynamic data structures can be sent and received
without the need for explicit serialization done by
the application.

One can imagine a similar tool for automated cre-
ation of according serialization classes and related
stuff. It would read in the source code of the type
definition and creates an according header file.

6 Ensuring Consistency

As shortly introduced in section 4.8 there has been
included a consistency check that ensures a flawless
synchronization operation between individual out-
bound/inbound sync module pairs. In detail, the
following requirements have to be met:

• Both outbound and inbound signal count have to
match each other.

• For each given outbound signal designator, there
has to exist a corresponding inbound signal with
the same designator.

• The specified outbound signal timing parameters
have to be large enough so that they can be han-
dled at the inbound sync module. This test can
fail due to an insufficient simulation resolution at
the inbound sync module.

• The signal type of the outbound signal has to
match the type of the corresponding inbound sig-
nal, of course.

While the check for most conditions is rather trivial,
this is not the case for the signal type. As described
in section 5, there are three parameters for types
of attached signals determined: A numerical type
identifier, a type name in form of an ASCII text,
and the size of the type. The type name can be
a generic one determined by typeid().name() or
some other text defined by the according template
specialization. The numerical type identifier is only
of use when the type is a known one.

In general, two types are considered identical when
the type identifiers match each other. When the type
identifier indicates a SystemC vector type (integer as
well as fixed–point), the width of the vector needs to
be identical too. In case both identifiers mark an
unknown signal type, the type name as well as the
type size need to be identical.

Note that fixed–point types are currently only com-
pared based on their total word length. That is dif-
ferences in binary point position, overflow and quan-
tization modes, and number of saturation bits won’t
be detected. This issue could be addressed in future.

Although this type checking mechanism is working
well for flat UDTs in most scenarios, it is not per-
fect. The primary issue is compiler dependency. For
instance there is no standard about the formation of
generic type names returned by typeid().name().
This name can vary from compiler to compiler al-
though the underlying structure is exactly the same.

However, as described in section 5.5, those odds
could be principally removed by providing template
specializations for ANY individual type.

F O R C E
D i g i t a l 28th November 2004

c© Digital Force / Mario Trams

http://www.systemc.org


10 A First Mature Revision of a Synchronization Library for Distributed RTL Simulation in SystemCTM

7 Physical Module Connection
Establishment

Outbound sync modules do not connect directly to
the corresponding inbound sync module of the re-
mote simulation kernel. Instead, there is set up one
server at a user–defined TCP/IP port. All outbound
sync modules that want to connect to some inbound
sync module within one simulation kernel have to
connect to this port in a first instance. The final
module–to–module connection is done by the proto-
col.

In order to make the module connection somewhat
systematic from a technical point of view, it has been
decided to take a threaded approach. That is, for
each inbound and outbound sync module a thread
is created. Each thread is responsible for carrying
out all tasks required for establishing the connection
physically as well as logically. The latter includes
especially the signal consistency check.

The threads used for connection establishment are
no SystemC threads. Instead, the GNU Portable
Thread library, or Pth [5] has been used. Pth
is a general–purpose thread library based on non–
preemptive multithreading. Actually, SystemC
brings along its own threading mechanism that could
be exploited as well for these purposes. I.e. it is well
possible to create SystemC threads that perform all
required actions before they terminate. However,
a potential problem is that these threads will be
runnable after the first call of sc_start(). The pol-
icy that has been used so far is to have all modules
successfully connected before the simulation becomes
started at all. Another issue is that these SystemC
threads would have to release CPU control by wait-
ing for a delta cycle. This could also disturb the
simulation semantics. For a final decision and an
eventual move to SystemC threads these issues need
to be analyzed in more detail.

8 Synchronization Operation

The actual simulation can start only when the con-
sistency check has been passed successfully for all
inbound and outbound sync modules. Otherwise the
simulation kernel will terminate — as it is usual for
SystemC–related errors.

During synchronization, outbound sync modules
send signal change notifications containing only a sig-
nal designator and a binary copy of the new signal
value. Any time–information has been removed from
the notifications. The first proof–of–concept version
of the synchronization library [1] used to transmit a
time information telling when the next notification
for this signal is to be expected. Now, the update
cycle is transmitted once along with the consistency
check and the inbound sync module is responsible for
determining the according synchronization times.

As described in section 4.9, the synchronization op-
eration incorporates a flow control mechanism now.
This configurable mechanism avoids a too fast pro-
gressing of the outbound sync module compared to
its corresponding inbound sync module. The flow
control mechanism is implemented by tracking ac-
knowledges that are sent by inbound sync modules
after a synchronization cycle has been completed.

On a low level, there is used a special packet–based
communication protocol involving intelligent buffers.
These buffers are intended to collect data and trans-
mit it in larger blocks. This leads to a vast reduction
of OS calls and hence reduces overhead. The size
of these buffers can be customized in view of per-
formance tuning (large buffers do not mean highest
performance). Refer to [12] for more details.

9 Library API

The basic structure of the library has been shortly
discussed in section 4.11. It provides three classes:
The primary library class (sc_dfsync) and inbound
and outbound sync module classes (sc_dfsync_in
and sc_dfsync_out).

Note that all names are defined within the name
space dfsync. For simplicity, the dfsync:: prefix
has been omitted here.

Also note that the function reference given here is
kept somewhat short and not all details are dis-
cussed. Refer to [12] for a more detailed description.

9.1 class sc dfsync

This class represents the basic synchronization li-
brary. There can be instantiated only one instance
of this class.

9.1.1 Constructor sc dfsync()

This simple constructor is to be used for creating an
instance of the synchronization library.

9.1.2 Destructor ~sc dfsync()

This is the destructor for the library and is normally
not explicitly used by the application.

9.1.3 sc dfsync in inbound module()

This member function has to be called for creating a
new inbound synchronization module. It returns an
object from the class sc_dfsync_in which is used
for later interactions with that particular module.

Full Synopsis:
sc dfsync in inbound module(

const unsigned int designator
) ;
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There is only one argument that specifies the desig-
nator of this particular inbound sync module.

9.1.4 sc dfsync out outbound module()

This member function has to be called for creating a
new outbound synchronization module. It returns an
object from the class sc_dfsync_out which is used
for later interactions with that particular module.

Full Synopsis:

sc dfsync out outbound module(
const unsigned int designator ,
const char∗ remote hostname , const int remote port ,
const unsigned int remote designator

) ;

designator specifies the designator of this particular
outbound sync module.

The pair remote_hostname and remote_port spec-
ifies hostname and port number (TCP/IP) of the
remote simulation kernel where this outbound sync
module shall connect to later.

Finally, remote_designator specifies the designator
of the according remote inbound sync module at the
simulation kernel that has been specified by host-
name/port.

9.1.5 int set parameter()

By using this member function it is possible to ma-
nipulate some parameters relevant for the synchro-
nization library as a whole (i.e. not specific to indi-
vidual inbound or outbound sync modules).

Full Synopsis:

int set parameter(
const unsigned int parameter ,
const unsigned int value

) ;

parameter specifies a parameter identifier and value
the new parameter value. Refer to [12] for details.

9.1.6 int connect all()

This member function is used for connecting all cre-
ated inbound and outbound sync modules with their
remote counterparts according the information that
has been specified during module creation. The
function does not return until all local inbound and
outbound sync modules have been successfully con-
nected.

After connection, neither new inbound/outbound
sync modules can be created, nor new signals can
be attached.

Full Synopsis:

int connect all (
const int portnum

);

The portnum argument specifies the TCP/IP port
number that is to be used for setting up a server
socket. Remote outbound sync modules that want
to connect to one of the local inbound sync modules
have to use this port number.

When there has been created no inbound sync mod-
ule, the value of the portnum argument does not mat-
ter.

9.2 class sc dfsync in

The class sc_dfsync_in represents inbound sync
modules. The constructor of this class is protected
and can only be invoked indirectly through the class
sc_dfsync.

9.2.1 int attach()

attach() is used for attaching a signal to the in-
bound sync module.

Full Synopsis:
template <typename T>
int attach(

const unsigned int designator ,
sc signal<T>& signal

) {}

The signal argument can be any SystemC signal
with arbitrary type.

Note that now a reference variable is used instead
of an explicit pointer for the signal. This makes the
application code to look more beautiful :-)

9.3 class sc dfsync out

The class sc_dfsync_out represents outbound sync
modules. The constructor of this class is protected
and can only be invoked indirectly through the class
sc_dfsync.

9.3.1 int attach()

attach() is used for attaching a signal to the out-
bound sync module.

Full Synopsis:
template <typename T>
int attach(

const unsigned int designator ,
const sc signal<T>& signal ,
const sc time cycle ,
const sc time phase shift

) {}

Note that for convenience there have been provided
various other templates differing in the way cycle or
phase_shift are specified. Refer to [12] for details.

The signal argument can be any SystemC sig-
nal with arbitrary type. The update cycle
can be specified either by handing over a pre–
defined sc_time variable, or by specifying a
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value/time unit pair (whatever appears to be more
applicable). The same applies to the phase shift
which can also be omitted (assumes zero phase shift).
Of course, a cycle of 0 is forbidden and is rejected by
the library.

9.3.2 int set parameter()

The class sc_dfsync_out has a public member func-
tion that allows the setting of parameters which
are related to individual instances of outbound sync
modules.

Full Synopsis:
int set parameter(

const unsigned int parameter ,
const unsigned int value

) ;

parameter specifies a parameter identifier and value
the new parameter value. Refer to [12] for details.

10 Example

Well, it has been decided to skip a detailed exam-
ple description here due to space considerations. In-
stead, an according description of an updated exam-
ple that has been initially described in [1] has been
outsourced into [12].

In general, the example has been changed mostly due
to the new library API. The only more or less funda-
mental change is that the result of the combinational
adder component does not need to be synced out at
twice the clock rate of the register. This is possible
because of the newly introduced phase–shift mecha-
nism.

It is planned to release somewhere in future a more
complex exemplary model incorporating a CPU (per-
haps even more than one CPU), some memory, and
some IO.

11 Future Work

Actually, the library development is in a state
where it fulfills all vital requirements that have been
planned for the targeted application. Nevertheless
there are still a few things that can be improved
regarding some internal/external handling and data
transfer issues.

Another qualitative improvement is planned with the
introduction of a configuration file mechanism. That
is, connection information such as host names, port
numbers, etc. becomes outsourced from the actual
application code into a configuration file. This avoids
a code recompilation in case there is made only a
change of a host name, for instance.

In junction with the configuration file mechanism
there are also plans to include final support for other

communication media rather than TCP/IP only.
This support of different media should be transpar-
ent for the actual application code. That is, nei-
ther changes in the code nor recompilations shall be
required, ideally. Instead of reinventing the wheel,
existing flexible communication libraries for hetero-
geneous networks could be used. VMI 2.0 [6] is a
good candidate here, as this is based on dynamically
loadable media–modules. The direct use of MPI is
also interesting and perhaps more future–proof than
VMI 2.0. In any case, TCP/IP should be directly
supported as an always–working fallback solution.

Other tasks include, but are not limited to:

• There are a few issues regarding error–handling
that can be improved.

• Analyze in more detail whether SystemC threads
instead of Pth threads can be utilized for connec-
tion setup purposes (see section 7).

• From an application point–of–view it might be
useful to consider synchronization modules as
bidirectional. I.e. rather than independent in-
bound and outbound sync modules there is a uni-
fied class of synchronization modules accepting
both inbound and outbound signals.

• In view of performance evaluation, there have
been still made no tests with more complex re-
alistic models. The models used so far were only
intended for basic functionality and stress tests.
They have a very bad (low) computation/commu-
nication ratio yielding in largely increased run-
times.

Practical deployment of the library will show
whether there are additional enhancements/changes
needed.

12 Availability

As the synchronization library is in a state where it
becomes interesting for serious practical use, it has
been made publicly available and can be downloaded
for free from
http://www.digital-force.net/projects/dist systemc

Along with the library there is provided a more or
less extensive user manual.

Note that the library is exclusively available for x86
Linux.

13 Ongoing Related Work

While there are many active projects dealing with
distributed simulation as such, it is still rather silent
in the field of distributed SystemC simulation. At
least there has been started a new project with quite
ambitious goals. Within the context of a rather large
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project targeted at the modeling of more or less com-
plete computer systems (RITSim Microarchitectural
Simulator [10]) there is a sub–project with the aim of
distributing the simulation transparently [11]. The
development of the basic concepts behind that mech-
anism is still in progress. One distinguished goal is
to modify the SystemC library directly, which is an
absolute must for the desired transparency.

In this context it remains open whether it is really
that worthwhile to manipulate SystemC itself. Un-
less the result does not become part of SystemC as
such, changes will have to be ported from version to
version. This can be very problematic. Not to speak
of proprietary (=very fast) implementations where
changes of the code are not possible at all. So rather
than changing a given implementation, it appears to
be better to make an analysis and determine which
additional fundamental functionality should be pro-
vided by SystemC itself. This additional (presum-
ably small) set of functions could be adopted by the
official SystemC specification and synchronization
libraries can be developed exclusively on top of the
SystemC library.

14 Summary and Outlook

The early rudimentary library used as proof–of–
concept for a distributed SystemC library exploiting
the concept of explicit lookahead has been success-
fully turned into a library for first practical use. This
document presented various vital mechanisms that
have been developed in order to put the generalized
library into practice.

Nevertheless, there is still potential for improvement
in both qualitative and quantitative domains in sight.
Apart from that, practical use within the targeted
field of application will show whether there are more
fundamental enhancements required or desirable.
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