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Abstract—Our VIA–capable PCI–SCI bridge was already
introduced to the community in several papers (e.g. [3],
[4]). While in these publications the focus were set at the
advantages of the integration of VIA characteristics into an
SCI architecture and the positive impact on message pass-
ing libraries, this paper is intended to provide the reader
with a couple of implementation details.

Functionality and cooperation of many of the hardware
components are described and deepened by tracing a re-
mote write operation throughout the whole system from
PCI bus to PCI bus. This trace also discloses the compo-
sition of the latency.
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I. Motivation and Introduction

Since 1996 we put our efforts in SCI technology.
While in the beginning this was limited by the use and
programming of commercially available hardware, this
changed when we received two PCI–SCI bridges devel-
oped by the CERN (Switzerland) RD24 project [1]. These
bridges were based on reconfigurable FPGAs (Field Pro-
grammable Gate Arrays), but were not fully implemented
that time. Nevertheless we saw a big potential and contin-
ued FPGA implementation. Meanwhile the Virtual Inter-
face Architecture (VIA) came up and some ideas/methods
used there seemed to us very useful to have also in an SCI
hardware. Although the CERN PCI–SCI bridge was re-
configurable, it was quite old already and there were sev-
eral architectural reasons that led us to the decision to
build up a new FPGA–based PCI–SCI bridge with some
changes and latest technologies. In 1999 we had the first
prototype of our hardware ready and since that time we
are about to implement FPGA functionality step by step.

Although SCI is intended for distributed shared mem-
ory (even cache coherent), several groups [11], [16] includ-
ing our working group [9], [10] use SCI as low–level layer
for message passing. This results in very low messaging
latencies. Also in the particular case of PCI–SCI inter-
faces there is no cache coherency which makes this hard-
ware family more suitable for message passing rather than
shared memory.

The key points that our design shall realize in addition
to features offered by todays commercially available PCI–
SCI hardware are:

• Protected User–Level DMA for large block transfers to
unload the CPU whenever possible.

• An improved memory management to increase flexibil-
ity for exporting local memory to remote nodes and thus
making real zero–copy possible.

This paper is intended to provide some concrete infor-
mation about the internal operation of the hardware, es-
pecially the internals of the FPGAs used in our design
where the majority of the know–how is concentrated. This
includes also some performance data showing that our
proof–of–concept design is not too bad compared with
other PCI–SCI hardware.

At the beginning, the hardware architecture and par-
ticulary the logical structure of the FPGAs are discussed.
Based on this information some important details about
write operations are stressed and the overall bridge op-
eration is demonstrated by tracing a single remote write
operation through the system. The bandwidth for remote
write operation based on SCI dmove transactions is shown
as well.

II. The Basic Hardware Architecture

Figure 1 describes the general architecture of the PCI–
SCI bridge. The central units in the design are the both
FPGAs — The PCI FPGA and the SCI FPGA. Contents
and operation of these reconfigurable programmable logic
devices are described in separate sections later.

Other important components are the SCI Link Con-
troller (LC–2 from Dolphin [15]), the Dual–Ported Mem-
ory (DPM) and the Static Memory (SRAM). While the
DPM is mainly intended for SCI or rather BLINK1 packet
storage, the SRAM contains important information for the
control flow: Upstream Address Translation and Protec-
tion Table, Downstream Address Translation and Protec-
tion Table, and Virtual Interface Context Memory.

The hardware architecture contains also a special PCI–
to–PCI bridge. Although this chip doesn’t implement
any conceptually important function, it simplifies several
things that are outside the scope of this paper. As de-
scribed later, this chip even has some bad impact on la-

1BLINK is the Backside–Link of the LC–2. SCI packets are encap-
sulated in BLINK packets which are 8 bytes larger than the actual
SCI packet.
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Fig. 1. Hardware Architecture

tency. But nevertheless we decided to use it to not make
the design more complicated than it already is. The shown
Flash EEPROM and the corresponding Init Path is also
important for the initialization and reconfiguration of the
PCI–SCI board, but has no meaning during actual oper-
ation.

A. The PCI FPGA

The PCI FPGA implements (or is intended to do so)
key features of the whole PCI–SCI bridge:
1. Translation of PCI into SCI transactions and vice–

versa.
2. Downstream Address Translation for outgoing transac-

tions.
3. Upstream Address Translation that is required to ”vir-

tualize” the exportable memory for exporting any arbi-
trary memory page rather than a fixed memory portion.

4. Protected User–Level DMA Engine including Virtual
Interface Architecture functionality (Doorbells, Work
Queues, ...) to offer a handy mechanism for user pro-
cesses to use block–moving DMA instead of the proces-
sor for data transmission.

While the first two points are known from todays com-
mercially available PCI–SCI hardware, the remaining ones

are dedicated only to our hardware solution.
Figure 2 gives a simplified view of the modular structure

and the communication paths of the PCI FPGA internals.
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Fig. 2. Simplified internal Structure of PCI FPGA

A.1 PCI Unit

There’s a PCI Unit that is working relatively indepen-
dent from the rest of the logic and contains both the PCI
Target and PCI Master. Independence means here that
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the PCI Unit is able to transfer data between Dual Ported
Memory (DPM) and local PCI bus in parallel to work
of remaining units in the FPGA. This is very important
in order to achieve a high internal parallelism for large
throughput.

The PCI Target is responsible for all accesses initiated
by the host processor, such as DPM & SRAM accesses,
FiFo interface accesses (see later), and accesses to internal
Configuration and Status Registers (CSRs) that are not
shown in figure 2. And, of course, the most important
function is the handling of accesses to imported remote
SCI memory. For the latter one there’s a lot of logic en-
capsulated in a separate module — the Transparent Mode
Controller (TMC). The PCI Target and in particular the
TMC is working here in strong interaction with the EPU
(see later) that performs the difficult management opera-
tions.

The PCI Master receives its commands from the EPU
and mainly transfers data automatically between DPM
and host main memory. Later, the PCI Master shall be
able to merge continuous commands (if possible) in order
to achieve long PCI burst transfers. Currently it starts
a new PCI transaction for every new command and thus
limiting the maximal burst length to 64 bytes.

A.2 Control Unit

The Control Unit implements some central control func-
tions inside the PCI FPGA. The most important compo-
nent contained inside is the so–called EPU. EPU is an
acronym for Embedded Processing Unit and is comparable
with a small microprocessor or rather micro controller.
The EPU consists of a 2–stage execution pipeline (fetch
and execute) and implements relatively complex opera-
tions while keeping a RISC–like instruction coding for sim-
plicity. Some examples of currently implemented opera-
tions are command exchange with the SCI FPGA, address
translation using the tables stored in the external SRAM,
and control of the PCI Master to get access to host main
memory. Interfacing with the PCI Master is performed
through a command queue (PMCQ — PCI Master Com-
mand Queue) that can take up a number of commands.

The EPU plays a central role inside the PCI FPGA
since all relatively complex operations maintained by this
FPGA are performed there. Besides operations needed for
remote write/read operations that will be discussed later,
the DMA engine functionality that is not implemented
yet is a good example for a compound of a bunch of single
operations that need to be done:
1. A DMA descriptor has to be fetched from main mem-

ory.
2. The right downstream address translation and protec-

tion table (DownATPT) entry has to be read to deter-
mine the global SCI address as well as to check whether
the DMA on this area is allowed.

3. The right upstream address translation and protection
table (UpATPT) entry has to be read to determine the
local host PCI address as well as to check whether the
DMA on this area is allowed.

4. PCI read transactions (or SCI read transactions) have
to be initiated.

5. If a read transaction has finished, an appropriate SCI
write respectively PCI write transaction has to be per-
formed.

6. When a DMA block transfer has finished, the DMA
descriptor must be changed to mark it ”ready”.

The designers of the PCI–SCI bridge developed at the
University of Munich [7], [8] had similar problems to solve.
Finally they decided to implement a small and simple, but
very effective microcode sequencer.

Another famous example for a processing unit embed-
ded in a communication hardware is Myricom’s LANai
chip [21] for their Myrinet cards. Besides some other
components such as the low–level wire interface, this chip
contains a small 32 Bit Load/Store RISC CPU. However,
this processor is not very specialized for its purpose and is
very similar to general–purpose CPUs that use memory–
mapped registers for communication with other units in
the system. Although this general ”touch” simplifies the
design process a lot, it wastes also a lot of performance
potential.

In the early stages of our design we planned to use such
mechanism as it is used in the Munich PCI–SCI bridge.
However, the problem with microcode sequencers is that
operations that need N cycles to complete also need N
microcode instruction words. The microcode sequencer
in the Munich bridge can at least handle idle or wait cy-
cles without special wait–instructions. This saves many
microcode instructions.

Nevertheless, the tasks to be performed by our process-
ing unit are much more complicated and expensive. Apart
from remote memory access operations such as PIO or
RDMA, the doorbell and work queue handling implied by
the VIA functionality will need support by the process-
ing unit to a great extend (lots of small different tasks).
This would substantially increase the hardware expense
for a conventional microcode sequencer — especially the
depth of the instruction memory had to be increased which
would cause probably the largest problems. Therefore we
decided to use a real processor model rather than a mi-
crocode sequencer.

In comparison with the processor inside the Myrinet
LANai chip, this processor architecture is very special-
ized and practically not usable as general–purpose CPU
— There are even no general–purpose registers. Further
details of the EPU operation are outside the scope of this
paper.

A.3 FiFo/SRAM and DPM Unit

These are other semi–autonomous units that are re-
sponsible for executing commands such as reads/writes to
Dual Ported Memory or Static RAM, or pushes and pops
to/from the several command FiFos contained in the SCI
FPGA.
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B. The SCI FPGA

The job of the SCI FPGA is concentrated on dealing
with SCI packets and talking with the SCI Link Con-
troller. A very raw overview of the logical structure of
the SCI FPGA is shown by figure 3.
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Fig. 3. Simplified internal Structure of SCI FPGA

B.1 FiFo Unit

The FiFo Unit of the SCI FPGA interface consists of a
set of outgoing and incoming queues for SCI packets that
can be accessed by the PCI FPGA. Also shown by the
figure is the nominal depth of each queue.

Since SCI is based on a split–transaction protocol and
SCI transactions are usually divided into requests and re-
sponses, the SCI FPGA has to handle both packet types
separately to guarantee deadlock–free operation.

Note that only control information such as buffer IDs,
transaction IDs, addresses, or status bits are physically
stored in all these queues. The actual data body of SCI
packets is exchanged between the PCI FPGA and the SCI
Link Controller via the Dual Ported Memory.

Inside the FiFo Unit there is one queue that stores both
manual incoming response and request packets. For au-
tomatic incoming packets two queues are used — one for
requests and another for responses.

Queues for outgoing packets are always split into sepa-
rate queues for requests and responses.

The sizes of the queues are well selected so that neither
deadlocks nor queue overflows can occur.

Note: The hardware supports two basic packet modes
— a manual packet mode and an automatic packet mode.
The manual packet mode is intended for sideband com-
munication and debugging purposes where SCI packets
have to be assembled and sent out explicitly by software.
The automatic packet mode covers all other transactions
managed completely autonomous by the hardware.

B.2 SCI Transaction Control

This component is responsible for dealing with auto-
matically generated requests coming from the PCI FPGA
via the Automatic Outgoing Request Queue. These pack-
ets need some special care. This includes for instance:

• Transaction ordering must be ensured in some cases.
• Appropriate actions have to be done when a response

doesn’t come back after a certain amount of time
(Time–Out).

In order to achieve such functionality, incoming SCI re-
sponses are forwarded from the BLINK Unit to the SCI
Transaction Controller.

B.3 SCI Packet Control

Another component shown in figure 3 is the so–called
SCI Packet Control component. This unit more or less
multiplexes packets to be sent out from different sources
and hands them over to the BLINK Unit

B.4 BLINK Unit

The BLINK Unit represents the interface for the LC–2
and sends out or receives packets. Incoming packets are
decoded and forwarded into the right incoming queue. Is
there no free incoming buffer available, the packet transfer
is rejected and the LC–2 has to re–send it later. In case of
incoming automatic request packets the BLINK Unit also
keeps in mind some data originating from the request.
This information is later needed in order to generate the
right response packet. An example is the source node ID
of the request that has to be used as destination node
ID for the response when it is sent back later (in case of
non–responseless transactions).

While the whole BLINK packet is taken out of the DPM
when an outgoing manual packet is being handed over
to the Link Controller, this is not true for automatically
generated packets. In this case only the data body is taken
from DPM and both header and trailer of the BLINK
packet are injected by the SCI FPGA on–the–fly.

Incoming response packets that belong to automatically
generated transactions (such as transparent read or write)
must be feed to the SCI Transaction Controller that will
put them into the Automatic Incoming Response Queue.

Incoming packets are always completely stored inside
the DPM, even if this is not really needed since required
header information of automatic packets is stripped by the
SCI FPGA for further processing.

III. Basics of Remote Write Operation

For remote memory write accesses the PCI Target sup-
ports similar to Dolphins PSB chip (PCI–SCI Bridge chip)
a set of write buffers — four pieces. These write buffers
can take up a consecutive block of up to 64 bytes each.
More correctly said, they can take up to 16 consecutive
32 bit words.
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A. Write Buffer States

For each of the four write buffers there’s a small state
machine as illustrated by figure 4.

request
issued

translate
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translatedto
send

ready

request
issued

flush

initial write

additional writes
(for write combining)

timeout?
full?

Fig. 4. Simplified Write Buffer State Machine

In the two states surrounding the idle state the state
machine basically waits for the execution of EPU rou-
tines. Stays a write buffer in translate request issued, an
appropriate command was given to the EPU to perform
a downstream address translation and to fetch other at-
tributes of the accessed SCI page. The last state — flush
request issued — has a similar meaning since the state
machine has to wait there until the EPU has handed over
the right command into the Automatic Outgoing Request
Queue of the SCI FPGA.

A write buffer can accept further data transferred by a
later, but not necessarily subsequent PCI write transac-
tion when the buffer stays in the translated state. The only
allowed write–combining strategy for PCI write transac-
tions is append–at–top (growing addresses). This func-
tionality is currently implemented in VHDL code, but has
not yet been synthesized and tested. Therefore the four
write buffers have never been used concurrently yet.

The state ready to send is entered whenever there’s no
more data to add to the write buffer. This state causes
a command sent to the EPU for handing over the write
buffer to the SCI FPGA for further processing.

B. Write Buffers vs. Outstanding Transactions

Although there are only four write buffers available, the
hardware design supports up to 48 outstanding remote
write transactions2. This is achieved by decoupling write
buffers from outstanding transactions as illustrated by fig-
ure 5.

2To save hardware ressources, only 32 are enabled yet
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Fig. 5. Transaction Buffer Assignment for Write Buffers

The mechanism is working quite simple. There is a Free
Buffer List (FBL) that contains all 48 (or 32) buffer iden-
tificators that have a direct correlation to the 64 available
SCI transaction IDs. When a new write buffer is being
opened, the next free transaction ID is fetched from the
FBL. When the write buffer content (or rather relevant
control information of the write buffer) is handed over to
the SCI FPGA, this write buffer becomes free and can be
reused immediately instead of waiting until the transac-
tion has completed finally. Once it has completed anytime
in future, the transaction ID is brought back into the FBL.

The advantage and intention of this strategy is to keep
the amount of relatively expensive write buffers at small
numbers while allowing as much outstanding transactions
as possible. The handling of lots of outstanding transac-
tions inside the SCI FPGA requires a comparatively small
amount of hardware ressources than the same number of
“real” write buffers which would occupy a large portion
of the PCI FPGA.

The transaction IDs stored inside the FBL are not used
exclusively for remote write operations. All transactions
except manually created ones take transaction IDs and
hence data buffer storage from the same pool.

C. Supported data types and data encapsulation

Since the design is primarily intended as optimized com-
munication hardware for message passing libraries, we de-
cided to support aligned 32 bit words as smallest unit (in
the following text only referred as word). This simplifies
the logic at some points and thus reduces the required
hardware resources and can help to speed up some things.

In which way are these single words encapsulated in-
side SCI packets? As described by the SCI standard
[17], a chunk of consecutive data up to an amount of
16 bytes within a 16–byte aligned block can be trans-
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ferred by using writesb transactions. However, to avoid
too many different types of SCI packets that each require
a completely different handling we have “misused” stan-
dard nwrite16/nwrite64 packets (dmove respectively) in
order to transfer less than 16 or 64 bytes of data. Ac-
tually, the used mechanism is very simple and similar to
this one used in writesb transactions. Figure 6 shows an
example of a partly filled 64–byte–payload packet.

used
Words

64 Byte SCI Data Body

Word 15

Word 0

Start Pointer

End Pointer

Fig. 6. Example of partly utilized data body of an SCI write packet

There are two small pointers encapsulated in otherwise
unused high–order SCI address bits that specify start and
end (+1) of the valid range. These pointers are finally
evaluated by the PCI Master in order to start and finish
the PCI write burst at the right offsets.

D. dmove or nwrite?

As mentioned previously at several occurances, the
hardware is able to generate either dmove or nwrite trans-
actions. Advantages and disadvantages of both shall be
well known and are not to be discussed here. The deci-
sion whether to generate dmove or nwrite is very simple as
this is just one attribute of each SCI page. That is, each
Downstream Address Translation and Protection Table en-
try contains a single bit that specifies whether dmove or
nwrite transactions shall be used. This bit has no meaning
for the PCI FPGA. It is only the SCI Transaction Con-
troller inside the SCI FPGA that is concerned about this
issue.

IV. Remote Write Execution

This section gives some detailed information of the flow
of a write transaction through the system. The values
given here are partly measured in reality and partly de-
rived from the design (simulation). Real–world measure-
ments were made on a 667MHz Alpha 21264 (EV67) sys-
tem based on the Tsunami chipset with 64Bit/33MHz PCI
bus.

Figure 7 illustrates the composition of the remote write
latency. As it can be seen there, it takes a total amount of
89 PCI cycles (33MHz; 30ns cycle time) that is required
for the transmission of one word from start of the PCI

bus transaction on the initiating node to end of the PCI
transaction on the destination node. This results in a
hardware latency of 2.67µs.

The latency components and actions performed by each
hardware module for a single one–word write operation are
explained step by step as following:
A: During the first step of a remote memory write the

host chipset places the write transaction onto the host
PCI bus where it is forwarded through the 21554 PCI–
PCI bridge. This takes 5 cycles.

B: In phase B the write transaction appears on the local
PCI bus and is taken by the PCI FPGA. There it is
further processed and handed over to the SCI FPGA
(inserted into the Automatic Outgoing Request Queue).
All single steps included by the “further processing”are
not visible in figure 7. However, here they are:

1. When the PCI Target detects the remote write oper-
ation it is immediately assigned to a write buffer and
written data is forwarded to the right place in the DPM.
According the data buffer assignment mechanism de-
scribed earlier by figure 5 the right SCI transaction ID
(and hence, DPM location) is fetched from the corre-
sponding FBL. However, this does not consume extra
time since there is always an ID prefetched for immedi-
ate use.

2. The write transaction has caused the execution of an
EPU routine and forced a transition in the write buffer
state (refer to figure 4). The EPU routine consists of
two instructions: perform a downstream address trans-
lation including a fetch of some other attributes related
to the accessed SCI page (two read cycles from the on–
board static RAM) and inform the Transparent Mode
Controller about the completion of the translation op-
eration.

3. The completion of the translate request forces a write
buffer state transition to translated where the buffer is
able to accept other write transactions to append them,
if possible.

4. Since currently there’s no write combining synthe-
sized, the buffer state is immediately set to ready to
send and again an appropriate command is given to the
EPU for flushing the write buffer (flushing in this con-
text means to hand it over to the SCI FPGA). The
corresponding EPU routine consists of two instructions
again, where the first is writing the right command into
the Automatic Outgoing Request Queue and the second
informing the Transparent Mode Controller as done pre-
viously.

5. The completion of the flush command causes a state
transition back to idle and the write buffer can be used
for new operations.

Some additional notes:
– Currently there are always write requests based on a
64 byte data body generated (nwrite64 or dmove64).
If possible, 16 byte packets shall be generated later in
order to reduce SCI traffic.

– In case of a PCI write burst, the PCI Target is able
to forward the whole burst into the DPM in parallel to
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Fig. 7. Latency portions for Remote Write (1 word encapsulated in dmove64 or nwrite64)

EPU operation. If the burst attempts to cross a 64 byte
boundary the PCI Target issues a Target Disconnect.

– Of course, the PCI Target can accept new write trans-
actions into other write buffers while the EPU is serving
some requests — everything is made highly parallel.

C: The write operation ripples through the major control
sections of the SCI FPGA in phase C.
The SCI Transaction Controller removes the transac-
tion out of the queue and takes further care for it. This
means, for instance, to watch for possible SCI–response
timeouts and to take appropriate actions in such case.
Other functionality that is planned here is to ensure
transaction ordering for up to 16 different ordering con-
texts [6]. However, this is not implemented yet and
outside the scope of this paper.
Basically, the SCI Transaction Controller prepares ev-
erything that is needed by the BLINK Unit to hand–
over the right packet to the Link Controller (nwrite64
or dmove64 in this example). However, before the fi-
nal command arrives at the BLINK Unit, it has to pass
the Packet Controller that acts as a simple multiplexer
scheduling different sources of outgoing packets.

D: The BLINK Unit needs three cycles before it starts
driving the BLINK packet onto the bus. After the
packet has been transferred it takes the BLINK Unit
two more cycles for some post–processing. Neverthe-
less, the BLINK Unit can overlap the processing of con-
sequtive transactions that is important for bandwidth
considerations (meaning it doesn’t need 16 cycles for
sustained operation).

The remaining time needed until the request arrives on
the other BLINK bus depends on some SCI settings and
ring configuration. The value of 18 cycles BLINK–to–
BLINK latency is based on a loop–back connection, a
100MHz SCI link frequency and some special kind of
cut–through settings for BLINK–to–SCI and SCI–to–
BLINK transfers. Actually, 18 cycles are quite a lot

of time here. Maybe this is caused by the loop–back
transfer and it takes some less amount of time when
the destination is another LC–2.

E: As soon as the BLINK Unit receives the write packet,
a notification is inserted into the Automatic Incoming
Request Queue. The FiFo Unit immediately sets a flag
to inform the PCI FPGA about the new packet. The
cycle count from the beginning of packet arrival to in-
formation of the PCI FPGA via this special flag is with
3 cycles very fast.
The BLINK Unit also allocates an incoming buffer and
controls the Dual Ported Memory so that the BLINK
packet is stored at the right place there.

F: It takes another 4 cycles until the EPU starts to pro-
cess the incoming request. This delay is mostly caused
by some EPU–specific mechanisms.

G: The EPU–routine for processing incoming request
packets (remote read/write) consists of three instruc-
tions. The first one loads the command from the Auto-
matic Incoming Request Queue and branches to another
routine depending on the type of the request. In case
of remote read/write the second instruction determines
the host physical PCI address by performing a lookup in
the Upstream Address Translation and Protection Table
that is stored in the static RAM. Finally, the third in-
struction issues the right command to the PCI Master
by writing it into the PCI Master Command Queue.

H: It takes the PCI Master 7 cycles to arbitrate for the
local PCI bus and prepare for the transaction until it is
started. Preparation means here especially to issue the
right transaction to the DPM Unit (remember that the
data to be written is stored inside the DPM).

I: The DEC bridge steals us another 8 cycles before it
starts the PCI transaction on the host PCI bus. It is
not completely clear why it takes 8 cycles here, since
a write from host to local PCI takes only 5 cycles (see
portion A).

J: The write operation onto the host PCI bus has a dura-
tion of 4 cycles and after a total delay of 89 cycles the
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remote write operation of the single word is finished.

Actually the operation has not completely finished at
this moment, since for a total completion the incoming
buffer has to be made free again, and in case of nwrite a
response packet has to be sent back.

A. Valuation of the Latency

With a hardware latency of 2.67µs for remote write op-
erations we have achieved a value that we expected based
on a so–called half–automatic transfer where the BLINK
request packet was pre–prepared by software and sent out
manually at the sending node [5].

A few tenths of a microsecond (dependent on the host
system) have to be added to this hardware latency to
get the software latency (CPU–to–CPU) that is slightly
more than 3µs. As comparison, Dolphins ASIC solutions
achieve software latencies of 2.3µs in case of the PSB32
chip together with the LC–2. The latest hardware solu-
tion, the Dolphin D330 (PSB66 along with LC–3) pushes
the latency even more down to 1.5µs.

However, we think that our achieved latency is not too
bad for a proof–of–concept and actually we were a bit sur-
prised that we could manage it to keep the latency that
low. It is also not completely clear to what extend Dol-
phins hardware benefits from the higher frequency. Even
in case of the PSB32, although it has a 33MHz PCI in-
terface, the BLINK side is clocked at 50MHz and it is not
known how many percent of the transaction handling are
performed in the BLINK and PCI clock domains.

B. What about Bandwidth?

Figure 8 shows the bandwidth we could obtain so far
on Alpha UP2000 systems with 64Bit/33MHz PCI Bus.

It is important to note that all involved SCI trans-
actions were dmove operations (dmove64). That is, no
responses were generated at the receiver, and thus the
packet throughput is not affected by this additional SCI
traffic. Of course, nwrite transactions are supported as
well. However, there is currently the solution of a logi-
cal hardware problem pending, that causes control flow
confusions when response packets have to be handled.

Because of the nwrite–problem, the shown bandwidth
curves should not be put into a 1:1 comparision together
with other SCI remote write measurements that usually
use nwrite.

The most important one of the three bandwidth curves
is the lower one, the SCI Ping–Pong curve where blocks
of data were written into main memory of another node
which copied the same data back. 64bit write operations
were used in all cases. At a block size of approx. 8kB the
highest performance is reached with a bandwidth of about
116MB/s.

The SCI Write–only curve shows the bandwidth for
64bit write operations where the receiver did not sent any
data back. However, it was ensured that the whole writ-
ten block has left at least the host chipset. This can be
achieved by a PCI read operation (e.g. from DPM) that is
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Fig. 8. Write Bandwidth measurements

surrounded by memory barriers and placed after the write
loop.

Finally, the third curve (DPM Write) represents the
write performance into the on–board Dual–Ported Mem-
ory and includes the chipset–flush as well. This one can
be considered as upper limit for the remote write perfor-
mance since basically it represents chipset and PCI capa-
bilities.

The gap that opens between DPM Write and SCI
Write–only curves for block sizes up to slightly more than
1kB is likely caused by the fact that the PCI target discon-
nects PCI bursts at 64 byte boundaries for remote write
operations while it accepts virtually endless bursts into
DPM. The hardware reaches its maximal remote write
capabilities at a block size of about 4kBytes.

Two further effects seen in figure 8 concerning the SCI
Write–only curve can be noted:
• The local bandwidth minimum at around 2kBytes that

is not completely allegeable yet. It may be caused by
some interferences that hurt the performance in this
region.

• The bandwidth for larger block sizes is with about
120MB/s somewhat higher than the ping–pong band-
with and approaches slowly 116MB/s. This effect is
likely caused by the large input buffer capabilities at
the receiver (64 packets, or 4kBytes). Further it raises
the assumption that the sender is able to produce data
faster than it can be processed by the receiver. In-
deed, this assumption could already be verified by sim-
ulations.

Generally there is to say that the whole internal archi-
tecture of the PCI–SCI bridge is highly pipelined. The
maximal bandwidth can be calculated by

Bandwidth =
Blocksize

N · Cycletime

where N is the cycle count of the longest pipeline stage
in the flow. Cycletime is 30ns in our design (33MHz) and
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the Blocksize is 64Bytes.
Assuming that there is no stage in the pipeline that

needs a total amount of more than 16 clock cycles per 64
bytes of data, the bandwidth should be around 127MB/s
(1MB=1048576 Bytes). This value is more or less reflected
by the current status of the implementation, taking into
account that the PCI chipset does not always generate full
64 Byte bursts. However, there is still some space for a
few improvements and actually we hope to reach a value
somewhere around 150MB/s (13–14 cycles worst case per
stage) for remote write operations. A migration to the
third generation Link Controller, the LC–3 that supports
128 byte SCI packets would further relax this situation
greatly, since the cycles needed in each pipeline stage are
usually fixed and independent of packet size (except in
case of PCI and BLINK bus transfers).

C. Potential for Improvements

Besides increasing the frequency by using faster build-
ing blocks (FPGAs, etc.) there’s still potential to save
a few more cycles. However, for big steps a redesign of
the hardware would be required. For instance the extra–
penalty caused by the DEC 21554 PCI–PCI bridge is with
13 cycles not less and could be eliminated by using a better
FPGA where a PCI–PCI bridge is not needed any more.
Another issue is the separation of the whole logic into two
FPGAs. If all these things could be placed in one FPGA,
the handshaking between PCI– and BLINK–related func-
tional units could be made much more efficiently and the
latency could be reduced by maybe 10–15 cycles without
a complete redesign of the general logical structure.

And as mentioned just before, the LC–3 and the use of
128 byte packets will lead to a much better bandwidth.

D. What about Read Operations?

Indeed, remote read operations are supported as well
and the required functionality is nearly completely im-
plemented. However, we have to mention that it is not
our plan to support this functionality to a great extend.
The reason for this is again our focus on message passing
libraries where remote write operations are much more
important than remote reads.

V. Available Software

Apart from a low–level driver and a couple of configura-
tion and test programs for x86 as well as for Alpha Linux
systems there is an extended Virtual Interface Provider Li-
brary (VIPL) available [20], [12]. The VIPL can be con-
sidered as a low–level communication API for hardware
based on the Virtual Interface Architecture [19] compara-
ble with SISCI [18] for SCI. It wraps driver and hardware
functions and special memory operations provided by a a
dedicated memory management module [13] and delivers
all this functionality in a more or less standardized way
(ExtVIPL) to upper software layers. The phrase “more or
less” means that the original VIPL had to be extended by
a few functions in order to include the Distributed Shared
Memory functionality that is not part of the VIA specifi-
cation.

Although there are made no deeper investigations yet,
there are also plans to provide a SISCI API [18] for this
special hardware. However, the original SISCI API is
closely bound to Dolphins SCI hardware architecture fea-
tures and therefore there are some doubts that the whole
API can be supported 1:1. Nevertheless essential func-
tions such as Create/Connect/MapSegemt should be eas-
ily adaptable.

Concerning higher software layers there is an ongoing
work to develop an MPI library [9], [10] that is able to
take the full advantages of the underlying hardware. An
interesting piece of software is the so–called VIA Regis-
tration Management, or in short VRM [14], that is able
to hide the limited hardware ressources (amount of ex-
portable and importable memory). Basically, this func-
tionality is achieved by automatic deregistration of areas
that have not been used for a longer period and automatic
registration of areas that are needed but not registered at
that moment (similar to memory caching strategies). A
more detailed description is outside the scope of this pa-
per.

VI. To Do

The completion of the full intended hardware function-
ality still requires a lot of work. In particular this includes
the DMA engine and the associated VIA Doorbell func-
tionality that is needed to support true protected user–
level DMA within an SCI environment. As previously
mentioned, most of this functionality requires the integra-
tion of new instructions to the embedded processing unit.

Another important functionality that has not been im-
plemented yet but is needed in junction with remote write
operations is a mechanism to guarantee write transaction
ordering. In case of Dolphin’s hardware so–called Store
Barriers are used for this purpose. However, we have
planned to use another mechanism were write operations
made onto SCI pages with a special attribute (so–called
General Buffer/Transaction Ordering Attribute) are to be
used for that purpose. This eliminates explicit store barri-
ers and thus can help to improve performance. For further
details please have a look at [6].

VII. Summary

In this paper we provided some detailed information
about the basic operation of our hardware. The raw hard-
ware architecture was briefly reviewed as well as a zoom
into both FPGAs. The essentials of write buffer handling
policies were described as well as a relatively detailed view
of a remote write execution. Finally we could conclude
that our hardware solution does not show a fatal lack
of performance in comparison to commercial hardware.
Nevertheless our PCI–SCI bridge will keep its status as
a proof–of–concept and will not go in competition with
other solutions.

Latest information about the hardware project de-
scribed within this paper can be obtained from our web
page that can be found at

http://www.tu-chemnitz.de/~mtr/VIA_SCI/
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