
Digital Force White Paper

Date: 13th February 2005
(Last Build: February 13, 2005)

Realtimify — A small Tool
for Real Time SystemCTM Simulations

Mario Trams

Mario.Trams@digital-force.net

F O R C E
D i g i t a l

Digital Force / Mario Trams

http://www.digital-force.net

http://www.systemc.org
mailto:Mario.Trams@digital-force.net
http://www.digital-force.net

Realtimify — A small Tool for Real Time SystemCTM Simulations 1

Realtimify — A small Tool
for Real Time SystemCTM Simulations

Mario Trams

Mario.Trams@digital-force.net

Abstract
This paper discusses Realtimify — a small helper module for SystemC applications. This module is
intended as a simple to use approach to carry out SystemC simulations in real time. Realtimify can
be easily plugged as it is into most SystemC applications. However, because of its simplicity it can be
also easily adapted to the special needs of the according application.

1 Introduction

Realtimify (pronounced like ”real”–”time”–”ify”) is
a tiny helper module for SystemC models that are
intended to be simulated in real time. That is, one
simulated second should stretch across one second in
real time, for instance.

There are various examples where such ”realtimifica-
tion” is suitable or even necessary. One good exam-
ple are those models that include interactive control
and visualization over the simulation process.

But there is also opened another completely new ap-
plication of SystemC as such. That is, exactly the
same SystemC model that is used for pure simula-
tion purposes can be used as primary controlling in-
stance for the final application. Imagine a machine
consisting of sensors, actuators, and a controller that
is generating new actuator commands depending on
the current state and sensor inputs. This controller
might be more or less complex and can be modeled in
SystemC. (Notice that we are not necessarily speak-
ing about some synthesizable model that later will
become some piece of hardware or a combination
of hard- and software. We are just speaking about
a general behavioral model.) This controller could
be simulated and debugged based on artificial sensor
data. Later, the artificial sensor stream is ”simply”
replaced by readings from real sensors and the model
controls real actuators rather than virtual ones.

In that sense, SystemC is not just used for simula-
tion and modeling purposes. Instead, it becomes the
runtime environment for the actual application.

Of course, in many cases the dramatic performance
losses due to the significant overhead induced by Sys-
temC will be the most limiting factor making this
approach unsuitable for many applications.

2 Operational Principle

The basic operational principle is very simple so that
it is almost not worth to speak about it.

In regular application–specific intervals the current
simulation time tsim is compared against the real run
time trun that has been spent so far. The difference
tdiff = trun − tsim between both times is the time
the simulation is ahead of real time. For a real time
simulation tdiff should be zero. So all that needs to
be done is to suspend the simulation process for tdiff

before proceeding.

Realtimify is based on gettimeofday() and
usleep() which are both standard operating system
calls. That is, the smallest resolution Realtimify can
deal with is one micro second.

3 Limitations

As just described, Realtimify can work with resolu-
tions up to one micro second. Formally, the resolu-
tion could be increased even more. For instance with
the use of RDTSC on IA32 systems in junction with
nanosleep(). But even a resolution of one micro
second is questionable considering the power of to-
day’s computers. Realistic resolutions probably start
at hundreds of micro seconds. In the end, this does
also heavily depend on the application’s complexity
as well as the actual application needs. For simple
interactive simulations a resolution of 0.1s to 0.04s
should be fine in order to achieve a smooth behav-
ior.

The precision of the realtimification depends mostly
on the operating system characteristics. That is, for
hard real time requirements one also needs an accord-
ing real time operating system. On standard Unixes
(including Linux), the suspension of the process with
usleep(100) means a suspension of at least 100 mi-
cro seconds. Depending on the process scheduler and
other pending activities, it might take slightly more
time. Fortunately, Realtimify is based on absolute
time measurements. This avoids systemic errors that
are accumulating over the time. That is, when a cer-
tain usleep() took somewhat longer than planned,
the next usleep() will automatically suspend the
process for a shorter period.

F O R C E
D i g i t a l 13th February 2005

c© Digital Force / Mario Trams

http://www.systemc.org
http://www.systemc.org
mailto:Mario.Trams@digital-force.net

2 Realtimify — A small Tool for Real Time SystemCTM Simulations

Of course, Realtimify can only compensate run time
differences when the simulation time is ahead of real
time (i.e. tdiff > 0). It is not a time-machine
that could compensate those cases where real time
is ahead of simulation time. When this is the case,
the simulated model is just too computing–intensive
to be simulated in real time.

4 Using Realtimify

Using Realtimify is fairly simple. All that is needed
is to instantiate the Realtimify module. The syn-
chronization interval is to be specified directly along
with the module instantiation. The interval can be
specified either as double/sc_time_unit pair or as
sc_time object.

The following example sets the interval to one second
using the first approach.

r e a l t im i f y REALTIME(” r ea l t im i f y ” , 1 .0 , SC SEC) ;

Setting the interval using an sc_time object does not
differ very much:

sc time i n t e r va l (1 .0 , SC SEC) ;
r ea l t im i f y REALTIME(” r ea l t im i f y ” , i n t e r va l) ;

Together with Realtimify there is also provided a
small example demonstrating the application.

5 Technical Issues for the Use
of Realtimify

The synchronization interval should be well selected
to match the requirements of the application. For
instance, when there is to be written out a message
every tenth part of a second, the resolution should
be at least 0.1s. When the resolution would be 1 sec-
ond for this example, one would receive every second
a bunch of ten messages, which might be certainly
not desired. Notice that the exemplary model might
still incorporate other internal processes working at
a much higher resolution than just 0.1s! The only
important thing is that interactions with the outside
world are handled in real time.

When the Realtimify process becomes scheduled by
the SystemC kernel, this happens in the evaluate
phase of the very first delta cycle of the according
simulation time. That is, the update phase of the
first delta cycle as well as additional delta cycles will
be processed after the synchronization. So it is guar-
anteed that no signals become changed prior to the
corresponding real time.

However, because the scheduling process of Sys-
temC is not deterministic, there cannot be guaran-
teed that no other SystemC thread/method becomes
scheduled prior to the Realtimify method. As just
stated above, this still means that no signals become

changed too soon, as this will be done in the follow-
ing update phase of the delta cycle. Nevertheless, it
might be that some external actions are carried out
too early. We can consider again a process that is
writing out a message every second. When a message
is to be written out at simulation (= real) time of 10
seconds, the message should appear in the vicinity of
10 seconds rather than 9 seconds, for instance.

Basically, there are two work–arounds to deal with
that situation:

1. Increase the Resolution.
Although a realtimification would call for a cer-
tain resolution (for instance, say 1 second), the
actual resolution could be increased. When we
are speaking about some human interface that is
generating one message every second, the resolu-
tion could be set to 0.1s. Considering human per-
ception, it will certainly make no difference when
a message that is to appear at offset 10.0s actually
appears at offset 9.9s. The same is true when we
are talking about interactive systems and relative
times. When a reaction for a certain action is ex-
pected after 1.0 seconds, one won’t notice when
the reaction appears already after 0.9 seconds.

2. Insert a Delta Cycle.
Before doing anything worthwhile, the appli-
cation processes could simply delay its ac-
tions by another delta cycle. In case
of SC_THREAD this can be easily accom-
plished by wait(SC_ZERO_TIME). In case of
SC_METHOD this is problematic. Unfortunately,
next_trigger(SC_ZERO_TIME) does not pass
the control to other processes, and hence evenly
not to the Realtimify process.
Anyway, in many applications the additional
delta cycle appears inherently. That is the case,
when the critical processes are triggered indi-
rectly by events caused by other processes.

6 Realtimify Code

The code of Realtimify is rather simple and widely
self–documented. Listing 1 shows the header file.
Because of the additional constructor arguments the
code differs a little bit from the conventional way.

The implementation code of Realtimify is shown in
listing 2 and 3.

The constructors are more or less just wrappers for
the actual initialization function init(). The pri-
mary task of the init() function is to determine a
scale factor (or rather divisor) that is later needed
for converting the result of sc_simulation_time()
into micro seconds. As stated by the comments, the
calculation of the scale value is somewhat strange
because of floating point issues.

Also notice that the starting real time of the simula-
tion is not taken during the initialization but at the

13th February 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

Realtimify — A small Tool for Real Time SystemCTM Simulations 3

� �
29 SCMODULE(r e a l t im i f y) {
30
31 // Declarat ion o f pub l i c module constructors .
32 SC HAS PROCESS(r e a l t im i f y) ;
33 r e a l t im i f y (sc module name name , double i n te rva l t ime , sc t ime un i t i n t e r v a l u n i t) ;
34 r e a l t im i f y (sc module name name , sc t ime i n t e r v a l) ;
35
36 protected:
37
38 // Declarat ion o f the actua l synchronizat ion funct ion.
39 void process() ;
40
41 // Some add i t i ona l he lpe r funct ion. . .
42 void i n i t () ;
43
44 // i n t e r v a l s t o r e s the synchronizat ion i n t e r v a l (r e so l u t i on)
45 sc t ime i n t e r v a l ;
46
47 // s ta r t r ea l t ime usec s s t o r e s the r e a l time when the s imulat ion has been s ta r ted
48 unsigned long long s t a r t r ea l t ime usec s ;
49
50 // s ca l e s t o r e s a s c a l a r used to convert the r e s u l t o f sc s imulat ion t ime in to
51 // micro seconds
52 double s c a l e ;
53
54 } ;� �

Listing 1: realtimify.h

first invocation of the realtimify process. The back-
ground of this feature is the point that the elabo-
ration phase of the SystemC application might take
a significant amount of time. When the real time
would be counted from the very beginning, the real
time can be significantly ahead of the simulation time
when the actual simulation starts — meaning we get
real time violations which might cause undesirable
behavior. This means, at the beginning the simula-
tion will progress rather quickly and faster than in
real time until the real time is caught up by simula-
tion time.

The actual Realtimify–process (listing 3) is not com-
plicated as well. In case the simulation has been
just started, the current real time is determined
and stored in start_real_time_usecs. Otherwise
the difference between current simulation time and
real time is determined and the application process
becomes suspended accordingly by using usleep().
When the difference is negative, there can’t be done
very much from a general point of view. As it can
be seen in listing 3, Realtimify can write out a warn-
ing when DEBUG is defined for compilation. However,
whether there could be done something sensible to
deal with this situation depends on the actual appli-
cation. In most cases there won’t be any choice ex-
cept to try the simulation on a faster machine. But
there are also applications where Realtimify could
automatically adjust some runtime parameters with-
out hurting the overall simulation result. Imagine
some simulation application that is visualizing the
result graphically at a standard rate of say 25Hz. In
this case Realtimify could be slightly changed so that
it can dynamically adapt the display rate depending
on the current situation.

7 More Potential for Realtim-
ify Enhancements

Realtimify in its basic form as described herein har-
bors a problem that is not immediately visible. The
point is that results which are needed at real time
T are generated beginning with real time T . As
the calculation takes some time, there will always be
some delay until the results are available. Depend-
ing on kind and complexity of the application, this
delay could be not desired and/or even harmful —
although the application complexity does still allow
for a real time simulation.

Imagine some application that does something every
second and every step requires 0.5s of computation.
This implies two facts: Actually, the model could be
twice as complex to be simulated in real time. But
in worst case the results are available half a second
too late.

Instead of just waiting for a certain real time T , the
results that are to appear at T could be already cal-
culated in advance, if applicable. However, this is
a little bit difficult to achieve. The problem is that
there is needed some closer interaction between the
actual application and Realtimify. That is, the ap-
plication needs to be well aware about the issue and
informs Realtimify when (at which delta cycle) it can
carry out the synchronization. This renders the pres-
ence of a general (transparent) Realtimify module
somewhat useless, as in this case the synchroniza-
tion could be also done directly by the application.

An alternative would be to drive the application in
some kind of master–slave fashion. E.g. calculate
the results for T at T − 0.5s, and just output the
results at T .

F O R C E
D i g i t a l 13th February 2005

c© Digital Force / Mario Trams

http://www.systemc.org

4 Realtimify — A small Tool for Real Time SystemCTM Simulations

� �
36 //
37 // Rea l t imi fy module constructor − checking i n t e r v a l g iven as double/sc t ime un i t p a i r
38 //
39 r e a l t im i f y : : r e a l t im i f y (sc module name name , double i n te rva l t ime , sc t ime un i t i n t e r v a l u n i t) :
40 sc module(name) {
41
42 // Convert the double/sc t ime un i t p a i r i n to an sc t ime object .
43 i n t e r v a l = sc t ime(in te rva l t ime , i n t e r v a l u n i t) ;
44
45 // Ca l l the actua l i n i t i a l i z a t i o n funct ion.
46 i n i t () ;
47
48 }
49
50 //
51 // Rea l t imi fy module constructor − checking i n t e r v a l g iven as s i n g l e sc t ime object
52 //
53 r e a l t im i f y : : r e a l t im i f y (sc module name name , sc t ime i n t e r v a l) :
54 sc module(name) , i n t e r v a l (i n t e r v a l) {
55
56 // Ca l l the actua l i n i t i a l i z a t i o n funct ion.
57 i n i t () ;
58
59 }
60
61 //
62 // The actua l i n i t i a l i z a t i o n funct ion. . .
63 //
64 void r e a l t im i f y : : i n i t () {
65
66 // I n case the s p e c i f i e d i n t e r v a l f o r performing a r e a l time check and br ing ing
67 // the app l i ca t i on i n sync (i f needed) i s sma l l e r then one microsecond , we i s s u e
68 // a warning.
69 i f (i n t e r v a l . to seconds() < 1e−6) {
70 c e r r << ”Rea l t imi fy Warning: The s p e c i f i e d Rea l t imi fy i n t e r v a l (” << i n t e r v a l << ”) ” << endl ;
71 c e r r << ” i s below micro second r e so l u t i on (proceeding anyways) ! ” << endl ;
72 }
73
74 // Reg i s te r the actua l Rea l t imi fy SystemC process (as SCMETHOD) . The method i s
75 // s e l f −timed (see below) and i s not s e n s i t i v e to any s i g n a l .
76 SCMETHOD(process) ;
77
78 // Later , s t a r t r ea l t ime usec s holds the r e a l time when the s imulat ion has been
79 // s ta r ted . A value o f zero means that t h i s s t a r t i n g time has not yet been taken.
80 // Note: We do not take the s t a r t i n g time r i g h t now, i . e. dur ing the e laborat ion
81 // phase. Instead , i t i s taken at the f i r s t s imulat ion cyc l e . This i s , because
82 // depending on the s imulat ion model the e laborat ion phase might take a
83 // s i g n i f i c a n t amount o f time.
84 s t a r t r ea l t ime usec s = 0;
85
86 // Get the de fau l t time r e so l u t i on and convert i t to micro seconds.
87 // This i s needed, because we have to qua l i f y the r e s u l t o f sc s imulat ion t ime() ,
88 // as t h i s i s unit−l e s s .
89 sc t ime defau l t t ime = sc get de fau l t t ime un i t () ;
90 double defau l t t ime usecs = defau l t t ime. to seconds() ∗ 1000000;
91
92 // Determine the s ca l e va lue used to convert de fau l t time un i t s i n to micro seconds.
93 // Note: This i s not done by a simple d i v i s i o n as t h i s can introduce s i g n i f i c a n t
94 // rounding e r r o r s . Instead , we do t r i a l &e r r o r . . .
95 // Note: A check f o r ”< 0.5” means ac tua l l y ”< 1” and a check f o r ”> 5” means
96 // ac tua l l y ”> 1”. This i s because due to rounding i s s u e s the va lue that
97 // i s being checked might never have a va lue o f exac t l y 1 (e. g. 0 . 999999 . . .
98 // or 1 .000000000. . .1) .
99

100 s c a l e = 1;
101 i f (defau l t t ime usecs <= 1) {
102 while ((s c a l e ∗ defau l t t ime usecs) < 0.5) {
103 s c a l e ∗= 10;
104 }
105 } e l s e {
106 while ((s c a l e ∗ defau l t t ime usecs) > 5) {
107 s c a l e /= 10;
108 }
109 }
110
111 return ;
112
113 }� �

Listing 2: realtimify.cpp (Part 1)

13th February 2005

c© Digital Force / Mario Trams F O R C E
D i g i t a l

http://www.systemc.org

Realtimify — A small Tool for Real Time SystemCTM Simulations 5

� �
115 //
116 // The process (SCMETHOD) that i s r e gu l a r l y synchroniz ing s imulat ion time and
117 // spent r e a l time.
118 //
119 void r e a l t im i f y : : process() {
120
121 unsigned long long current t ime usecs ;
122 s t ruct t imeval t v ;
123 unsigned long long cur rent rea l t ime usecs ;
124 double current s imulat ion t ime usecs ;
125 long long t ime d i f f e rence usecs ;
126
127 // Determine the current time i n micro seconds.
128 gettimeofday(&tv , NULL) ;
129 cur rent rea l t ime usecs = (1000000 ∗ tv . t v s ec + tv . tv usec) − s t a r t r ea l t ime usec s ;
130
131 i f (! s t a r t r ea l t ime usec s) {
132 // This i s the very f i r s t invocat ion o f Rea l t imi fy . So we take the current
133 // r e a l time which becomes the s t a r t i n g time.
134 s t a r t r ea l t ime usec s = cur rent rea l t ime usecs ;
135 } e l s e {
136 // This i s not the very f i r s t invocat ion. So we have to see whether there
137 // have to be taken some act ions .
138
139 // F i r s t determine the current s imulat ion time i n micro seconds.
140 current s imulat ion t ime usecs = sc s imulat ion t ime() / s ca l e ;
141
142 // Next ca l cu l a t e the d i f f e r enc e between s imulat ion and r e a l time.
143 t ime d i f f e rence usecs = (long long) (current s imulat ion t ime usecs − cur rent rea l t ime usecs) ;
144
145 i f (t ime d i f f e rence usecs >= 0) {
146 // When the d i f f e r enc e i s p o s i t i v e t h i s means the s imulat ion time i s ahead
147 // o f the r e a l time. I n t h i s case we have to i s s u e an according us leep() c a l l .
148 us leep(t ime d i f f e rence usecs) ;
149 } e l s e {
150 // When the d i f f e r enc e i s negat ive t h i s means the s imulat ion time i s behind
151 // the r e a l time. I n other words, the model can ’ t be simulated i n r e a l time.
152 // Well , i n t h i s case we can ’ t do much from here. . . .
153 #i f d e f DEBUG
154 c e r r << ”Rea l t imi fy Warning: Real time v i o l a t i o n ! ” << endl ;
155 #endi f
156 }
157
158 }
159
160 // Schedule the next synchronizat ion task according the app l i cat ion−s p e c i f i c
161 // s e t t i ng .
162 nex t t r i gge r (i n t e r v a l) ;
163
164 return ;
165
166 }� �

Listing 3: realtimify.cpp (Part 2)

Though, either solution requires according awareness
of the actual application. This might be certainly not
desired.

Anyway, those issues could be addressed in future
and perhaps according mechanisms could be gener-
alized and placed into an enhanced version of Real-
timify.

8 Summary

Realtimify is a neat tool that can be easily integrated
into SystemC models in order to achieve an execu-
tion of the simulation in real time. In most appli-
cations Realtimify can be integrated out of the box
without any changes. Because of its simplicity, it can
be easily modified in order to meet the application’s

specific needs.

There have been shown some limitations and odds of
this tool as well, leaving space for future optimiza-
tions and enhancements.

F O R C E
D i g i t a l 13th February 2005

c© Digital Force / Mario Trams

http://www.systemc.org

	Introduction
	Operational Principle
	Limitations
	Using Realtimify
	Technical Issues for the Use of Realtimify
	Realtimify Code
	More Potential for Realtimify Enhancements
	Summary

