Digital Force White Paper

Date: 14th February 2004
(Last Build: 14th February 2004)

Conservative Distributed Discrete Event
Simulation with SystemC
using Explicit Lookahead

Mario Trams

Mario.Trams@digital-force.net

Digital Force / Mario Trams

http://www.digital-force.net

Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead 1

Conservative Distributed Discrete Event
Simulation with SystemC
using Explicit Lookahead

Mario Trams

Mario.Trams@digital-force.net

Abstract

This paper deals with the distributed simulation of RTL-like SystemC models. It does not just contain
a presentation of a first small library that makes such a distributed simulation possible. It contains as
well various design decisions that have been made in order to meet the primary goals. Among other
things, these goals were the use of SystemC as it is — i.e. the reference implementation without any
changes/additions to the language definition. Also, a high degree of transparency is desired so that
the model programmer is not concerned with synchronization details.

The solution demonstrated herein is not completely transparent — primarily caused by restrictions
due to the current SystemC implementation. However, besides a few extra—information that needs to
be specified during the elaboration phase it can be considered transparent.

Keywords

SystemC, Conservative Distributed Discrete Event Simulation, RTL Simulation

1 Background

For a special project there was a demand to dis-
tribute a more or less complex simulation model
across multiple computers. An obvious reason for
such a distribution is speed, of course. Another rea-
son is the capability to join different kinds of simula-
tion kernels running different partitions of the whole
design to be simulated.

The model to be simulated is not just a piece of hard-
ware. Rather it is a mixture of concurrent software
behavioral models and dynamic physical processes.
As these physical processes are to be simulated based
on discrete time steps, SystemC appears to be a good
framework to do this.

According official SystemC documentation ([5], page
9) interfacing SystemC with other simulation kernels
— and hence as well with instances of itself — is on
the road map. However, it is not clear when and if
at all this will become part of the SystemC standard
and when it will be implemented in the reference
implementation.

So the decision has been made to specify and de-
velop some kind of a small plug-in (a C++ class
library, in fact) that can be used in junction with the
SystemC reference implementation. It should also
work in junction with other SystemC implementa-
tions, but that has not been tested yet.

The advantage of this approach is that this library
does not require any changes of the actual SystemC
implementation. This is a crucial point as it does
not bind the functionality to a certain version of a
SystemC kernel.

Of course, this rather loose integration into SystemC
implies various inefficiencies. However, so far the
primary goal was to get a running library at all.

It is not a goal of this project to provide a com-
pletely transparent solution that can take arbitrary
SystemC code and distribute it across multiple sim-
ulation hosts.

2 Distributed DES Review

There have been written lots of papers and text
books that deal with distributed discrete event sim-
ulations (also known as distributed DES, sometimes
called parallel DES). A comprehensive summary can
be found in [1] or [2]. Therefore just a short review
of some basics is given here for completeness.

In a distributed DES, partitions or so—called logical
processes (LPs) of one simulation model are being
simulated on various computers in parallel. All LPs
are connected logically by channels.

Figure 1 shows an exemplary configuration with
three logical processes that are represented by ba-
sically independent simulation kernels.

LP2 generates a signal C that is evaluated by LP3.
LP3 also receives signals A and B from LP1. In turn,
LP1 receives the signal D which is generated by LP3.

An LP usually sends a signal notification to other
LP(s) when the signal has been altered locally. Be-
sides other information, such a notification contains
the new signal value and some time information.

The setup shown by figure 1 is a non—trivial setup
as it contains a loop. This complicates things sub-

i tal

Dig
EHERMEE

14th February 2004
© Digital Force / Mario Trams

2 Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead

? ¢ outt---""
LP3

Fig. 1: Exemplary Distributed System

stantially, but in most simulation models loops have
a natural occurrence and therefore it is important to
deal with them.

When looking at LP2, it has a rather simple job.
It can generate new values for D and can send out
notifications as needed. This is because LP2 does not
receive any signal notifications from other LPs. But
LP1 cannot continue simulating over a simulation
time that has not yet been reached by LP3. The
same applies to LP3 which has to wait for both LP1
and LP2.

Two basic mechanisms are known that deal with this
situation. The so—called optimistic and the conser-
vative distributed DES.

2.1 Optimistic Simulation

In an optimistic simulation fashion, an LP that
awaits signal notifications from other LPs just con-
tinues its simulation based on notifications that have
been received some time in history. Signal notifica-
tions for other LPs are generated as usual. For the
case that an LP receives a signal notification telling
the signal has been changed in past, the LP has to
react appropriately. The problem is that the LP has
advanced the simulation based on an obviously out-
dated signal value. (In the special case that the value
of the signal has not changed, there is nothing to do.)

An obvious task to do by an LP that has received
a signal notification for the past is to turn back the
simulation time. This is also known as time warping.
What is required to accomplish that is a log of all
changes of local signals. Only in this case it will be
possible to restore the old state.

Besides this it is required to cancel all signal notifi-
cations that have been sent out to other LPs mean-
while.

2.2 Conservative Simulation

In contrast to the optimistic simulation policy where
inconsistent states are allowed in hope that they do

not appear too often, they are avoided from the be-
ginning in case of conservative simulation. That is,
an LP continues simulation at a certain time only
when it can be sure that no notifications with time
stamps in past will arrive.

This is accomplished by sending out so—called
nullmessages containing just a time stamp. By send-
ing such a time stamp the sending LP signals that
it will not generate regular signal notifications with
smaller time stamps. The information for these
nullmessages is determined by a mechanism called
lookahead. That is, the LP needs to look ahead in
order to determine when the next signal will change.
This is not trivial and it is especially problematic
in simulation models with zero propagation delays.
As a result, such models cannot be simulated with
conservative simulation.

3 Conservative or Optimistic
Distributed SystemC?

Now there’s the question: What to use for dis-
tributed SystemC simulation?

Answering this question was not very difficult, as it
appears to be very problematic to take the optimistic
approach. The primary concern is the logging of lo-
cal signals of an LP that is required for time warping.
In order to restore an old state it is necessary to track
every signal in the design. As such a functionality is
not provided inherently by SystemC it could only be
achieved by attaching every signal in the design man-
ually to some tracking modules. This is definitively
not desired as it uglifies the actual design and leads to
errors (when one forgets to attach a signal). The only
acceptable way would be to have some kind of wrap-
per for SystemC signal declarations (sc_signal<>)
that automatically registers signals when they are
declared. Whether this is applicable with SystemC
has not been evaluated yet. However, one drawback
that remains is the overhead that is caused by the
logging. Only a single signal that is feed into an LP
might require the logging of many many local signals
and other state—information.

As an additional difficulty, SystemC does not allow
to set the simulation time to arbitrary values. Per-
haps one can work around this problem with some
dirty trick. But that has also not been evaluated so
far.

Apart from these issues there are other concerns re-
garding optimistic simulation. Memory requirements
might grow significantly due to the signal history
that needs to be kept for some time. The optimistic
simulation policy is also subjected to a higher de-
gree of non—determinism regarding runtime. This is
because of the likelihood of extensive and recursive
rollbacks that might or might not occur depending
on some runtime behavior. That effect is a little

14th February 2004
© Digital Force / Mario Trams

i tal

Dig
EHERMEE

Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead 3

bit problematic when it turns into real time simula-
tions. However, there are several promising mecha-
nisms (also reviewed in [1]) that can lead to improve-
ments of these problems. One rather simple thing
is the introduction of so—called optimistic time win-
dows that avoid optimistic simulation “too far” into
future. This improves the realtime situation as the
simulation becomes more deterministic. In addition,
it reduces the memory requirements because the his-
tory logs can be kept comparatively short rather than
potentially infinite.

A mixed approach of both conservative and opti-
mistic distributed simulation has been shown in [3]
and [4] in form of a distributed VHDL simulator.
This appears to be very promising as well. Though,
it seems to be very complicated to be implemented
for SystemC without modifying it.

The conservative policy is much more easy to handle
in junction with SystemC. First of all there’s no need
for signal history logs which simplifies the situation
greatly. Also it is rather simple to suspend the sim-
ulation progress for a certain time and there is no
need to set back the simulation time.

Additionally, from a practical point of view the con-
servative distribution strategy fits the targeted appli-
cation class very well. There is no simulation down
to the delta cycle level required and the states of all
signals change on regular time bases.

Hence, the conservative approach has been chosen as
underlying distributed simulation paradigm.

4 Availability of SystemC for
such Acrobatics

SystemC is not something like a hardware descrip-
tion language such as VHDL or Verilog. Instead,
it provides some functionality that is represented
by a C++ class library. Simulation models (more
correctly: system descriptions) are written in plain
C/C++ that makes use of SystemC primitives. If
the model is intended for simulation, it can be com-
piled with an ordinary compiler, linked against the
SystemC library, and executed on a host computer.

Due to the use of an ordinary language, an ordinary
compiler, and an ordinary simulation host, one can
use ordinary libraries and system calls within a Sys-
temC model. Thus, a SystemC process (meaning an
executable) can also communicate with other pro-
cesses — via TCP/IP or MPI, for instance. That
makes SystemC a very powerful tool compared with
other description languages.

To do the same thing with another HDL, perhaps
VHDL, it would be required to develop a new simu-
lator core or at least to change the existing conven-
tional simulator core. Digging into the VHDL-to—C
conversion that is also done sometimes is problematic
as well.

Another important aspect of SystemC is the cooper-
ative nature of parallelism. Threads within a simula-
tion model are not scheduled preemptively. That is,
once code of a SystemC thread is being executed, this
thread can’t be suspended except by the thread itself.
A SystemC thread can therefore stop and continue
the simulation as needed. This is exactly what is
needed in order to implement the required function-
ality. And, of course, it can be implemented without
modifying the SystemC simulation kernel itself.

5 Terminology

Before discussing more concrete things, here a few
words about the used terminology.

o outbound signal —
A local signal that is feed to some remote sim-
ulation kernel (via an outbound synchronization
module) is denoted as outbound signal.

o inbound signal —
A local signal that is updated by some remote
simulation kernel (via an inbound synchroniza-
tion module) is denoted as inbound signal.

o outbound synchronization —
Outbound synchronization refers to the general
process of informing remote simulation kernels
about the state of local outbound signals.

o outbound synchronization module —
This is a logical construct of a module that is re-
sponsible for performing outbound synchroniza-
tion of a number of outbound signals. An out-
bound synchronization module (or in short out-
bound sync module) is connected with a remote
inbound synchronization module.

o inbound synchronization —
Inbound synchronization refers to the general
process of handling incoming signal notifications
and controlling the local simulation process.

o inbound synchronization module —
dito ...

o signal notification —
Signal notifications are sent out by outbound
synchronization modules and are received by in-
bound synchronization modules. A signal notifi-
cation contains primarily

— a signal designator that designates the sig-
nal unique within the associated outbound/in-
bound module context.

— a signal type that specifies the type of the sig-
nal (double, int, ...).

— a signal value that represents the new signal
value.

— a signal period that states how long the new
signal value is valid (lookahead—-information;
see next sections).

i tal

Dig
EHERMEE

14th February 2004
© Digital Force / Mario Trams

4 Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead

6 More Conceptual Issues

What is required to realize the needed functionality?
The following subsections describe some rather gen-
eral issues while the remainder of the paper discusses
some technical details of this implementation.

6.1 Explicit Lookahead

It has been described that the conservative policy
has been chosen. This incorporates another prob-
lem: The lookahead. It needs to be determined how
long remote simulation kernels can safely continue
their simulation. To cope with that problem a mech-
anism has been used that actually does not require
the lookahead at all. Even more, it does not require
the sending of nullmessages. This has been desig-
nated as explicit lookahead here.

The idea is as following:

The targeted class of simulation models has a very
regular behavior. That is, signals will change their
states in a very predictable fashion with a certain
frequency. This update frequency is known at the
latest in the beginning of the simulation.

So from the practical point of view it is not necessar-
ily senseful to spent lots of efforts in a transparent
solution that determines the behavior at run-time.
The result of a first investigation was also that this
appears to be impossible to achieve with SystemC as
it is.

The solution that has been chosen finally was to let
the programmer of the simulation model specify the
update rate of each individual outbound signal. As
a positive side—effect, this eliminates the need for
nullmessages as well.

The synchronization system described herein does
not send out nullmessages with safe time stamps
and signal notifications containing new signal values
tagged with according time stamps. Instead, it sends
out signal notifications containing new signal values
tagged with time stamps containing an information
when the signal will change in future. It is not neces-
sary to include information about the current simu-
lation time where the signal actually changed. This
information is inherently known to the remote in-
bound sync module.

Of course, the lookahead information that is being
explicitly specified needs to match exactly the actual
behavior. In the current implementation, wrongly
specified information cannot be discovered during
runtime and therefore leads to wrong and/or non-
deterministic behavior of the simulation run without
any notice.

6.2 Event— or Time-Driven Out-
bound Synchronization?

This is another important basic question that re-
mains to be discussed. Changed values of outbound
signals need to be detected or caught by outbound
sync modules in order to feed them to remote simu-
lation kernels. This mechanism can be either event—
or time—driven. Event—driven means the outbound
synchronization is initiated when the corresponding
signal has just changed. In contrast, in a time—
driven outbound synchronization the corresponding
outbound signal is being read regularly — regardless
of the actual signal behavior.

Some first evaluation prototypes of the distributed
SystemC library used the event—driven approach.
The basic concept is that outbound sync modules
in the form of SystemC threads are made sensitive
for changes of the corresponding signals. However,
there appeared several inconveniences:

o It is problematic (or impossible) to set up Sys-

temC threads that are sensitive to a variable
amount of signals.
The only work—around is to use one thread per
outbound signal. However, that appears to cre-
ate unnecessary overhead in case of large amounts
of outbound signals.

e Outbound signals need to be from the class
sc_buffer instead of sc_signal. This is be-
cause value—updates of sc_buffer generate an
event even when the new value equals to old one.
That’s not the case for sc_signal.

o Outbound signals need to be updated by the ap-
plication exactly at the same frequency that has
been specified for it (see also section 7.4). So even
when it is obvious for the application that a sig-
nal will not change in the next couple of thousand
cycles — no way.

Time—driven outbound synchronization does not
show up these problems. Though there are some
other issues making it a little bit more complicated
to implement.

Nevertheless, event—driven outbound synchroniza-
tion seems to fit perfectly for optimistic distributed
simulation.

6.3 Distributed Simulation Semantics

The time—driven outbound synchronization rises up
another problem that requires a more clean definition
of the behavior of application threads. The issue of
interest is the relation between the exact moment
of outbound synchronization of a certain outbound
signal and when exactly the value for this signal is
being calculated. For two consecutive outbound sync
times t; and ty there are two choices:

14th February 2004
© Digital Force / Mario Trams

i tal

Dig
EERMEE

Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead 5

1. The value for t5 is processed at t;. We want
to call this pre—time processing. The main loop
of application threads would have the following
layout:

1 | while (1) {

2 <calculate and update signal values>;
3 wait(<for some time or some event>);
41}

Listing 1: Pre-Time Processing Thread

2. The value for t5 is processed at t;. We want to
call this in—time processing. In contrast to pre—
time processing the application needs to follow
the following layout:

while (1) {
wait(<for some time or some event>);
<calculate and update signal values>;

}

=W N

Listing 2: In—Time Processing Thread

In-time processing is actually the common way
for describing RTL models in VHDL or SystemC
(see also [8]).

For event—driven outbound synchronization only the
in-time method would be applicable.

For both of these choices there have to be considered
several further restrictions:

6.3.1 Pre—Time Processing

As the new outbound signal values for to are pro-
cessed at tp, it has to be guaranteed that the values
for t; have been sent out already. Furthermore, it
has to be guaranteed that the inbound sync for t;
has been finished as well. This is important because
the inbound signal information received at t; very
likely affects the outbound signals to be synced out
at tg.

What is required here is a barrier—functionality that
keeps application threads blocked until the synchro-
nization has been finished. This can be easily accom-
plished by introducing an appropriate barrier func-
tion that idles the thread in delta cycles until the
requirement is met. This function would be called
by the application thread prior to the processing and
update of outbound signals.

6.3.2 In—Time Processing

The outbound sync module needs to wait for several
delta cycles until it can be sure that the new values
have been processed. This is because the outbound
signal values are processed at the same simulation
time as they are synced out.

Similarly as for pre—time processing there is a barrier
required. However, here the synchronization library
needs to wait for the application threads rather than
vice versa. This turns out to be much more compli-
cated than it appears. How can the synchronization
library be sure whether the application threads have
updated the signals?

Assuming the application threads are scheduled in
the first delta cycle of a given simulation time, this
wouldn’t be a big deal. The synchronization library
could just wait for a delta cycle when it is being wo-
ken up. Unfortunately, an application thread does
not necessarily need to be scheduled in the first delta
cycle. Consider an example where a thread is trig-
gered (clocked) by some signal. The clock signal will
change in the first delta cycle which means the thread
will be scheduled in the second delta cycle. Even
more worse, there can’t be given a specific number
of delta cycles after what the thread will be sched-
uled. Finally, this depends on the number of trigger
indirections.

In general it is safe to read the most current values
of outbound signals when

a) there are no pending signal updates or event no-
tifications.

b) there are no other threads ready to run.

Unfortunately, this information is not directly ac-
cessible from the standard SystemC. There has also
been not yet found some way to check these condi-
tions indirectly without modifying SystemC.

6.3.3 Final Choice: In—-Time Processing

In the end the decision was made to make use of
in—time processing as the way to go — despite of
the problems of a clean implementation and related
limitations. The reasons for this decision are as fol-
lowing:

1. Pre-time processing would require this nasty
barrier call that needs to be carried out at the
beginning of every thread loop. This would im-
ply to go one more step away from a transparent
solution.

2. In—time processing appears to be more clean as
the actual signal semantics matches the logical
semantics and hence behaves more natural. I.e.
a signal is changed when it should be changed,
and not sometime in past. Additionally, the local
signal and the according remote signals change
synchronously at the same simulation time. Of
course, a simulation model that is aware of the
[pre-time processing] situation can easily deal
with it. But one needs to take more care when
specifying the model.

3. Pre-time processing is not compatible with
event—driven outbound synchronization. Hence

i tal

Dig
EHERMEE

14th February 2004
© Digital Force / Mario Trams

6 Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead

there is more application recoding required when
the outbound synchronization is changed from
time—driven to event—driven (for whatever rea-
son). In contrast, a switch from time-driven in—
time processing semantics to event—driven seman-
tics requires no change of the code at all. Except
in these cases where outbound signals are not reg-
ularly updated (— see advantages of time—driven
outbound sync in section 6.2).

4. Associated with the last point, there would be
no migration to optimistic DES possible as this
would imply event—driven outbound synchroniza-
tion.

5. A very practical issue: There is just no need to
deal with any level of trigger indirections for the
targeted application. Even a single indirection by
use of a simple clock is not really necessary.

6.3.4 Final Semantics

To conclude, the semantics of the signal distribution
can be described as follows:

The new value of an outbound signal that
changes at simulation time t becomes effec-
tive at the remote simulation kernel at the
same simulation time ¢. Outbound synchro-
nization for ¢ completes in the third delta cy-
cle. Inbound synchronization for ¢ completes
after the outbound synchronization for ¢ has
completed (if there is any). All inbound sig-
nals will become updated within exactly one
delta cycle.

Additional notes (other consequences):

o An inbound signal that affects an outbound sig-
nal with zero propagation delay behaves like a
register (provided the inbound/outbound update
times match each other). That is, asynchronous
paths from inbound to outbound modules will be
broken up.

o Inbound signals can’t be used as clocks for reg-
istering other inbound signals in a common RTL
context. Instead of taking a snapshot of the old
value, the new value would be taken by the regis-
ter. This behavior is deterministic as the synchro-
nization library ensures that all inbound signals
become updated within a single delta cycle.
Other regular signals can’t be clocked by inbound
signals as well when they affect outbound signals.
This is because the notification of the outbound
signals will be already sent out before the clock
becomes effective. This would introduce a phase—
shift of one cycle for these outbound signals. I.e.
the signal values arrive at remote simulation ker-
nels with a delay of one cycle. Btw., this latter
issue would not appear with event—driven out-
bound synchronization.

This problem might be addressed in future.

6.4 Application Thread Conventions

The basic application thread framework has already
been shown in listing 2 (page 5). A more detailed
template is shown in listing 3.

1 |<write initial values for outbound signals>;
while (1) {
<may NOT read inbound signals>;
<may NOT write outbound signals>;
wait(<for some time or some event>);
<process...>; // read/write as wanted

NO Utk WN

Listing 3: Template for Application Thread

The reasons for this layout have already been dis-
cussed in section 6.3.

A SystemC thread normally consists of an endless
loop. Before entering the loop, the thread usually
initializes a few or all of its output signals. This is
done here as well. This part is optional and includes
not only outbound signals but normal signals as well
(i.e. signals that are not feed to remote simulation
kernels).

Note that prior the call of wait() inbound signals
should not be read (line 3) and outbound signals
should not be written (line 4). Inbound signals
should not be read prior to the wait() as this will
return outdated values. Assuming that an inbound
signal changes at the same rate as the reading thread
cycles, reading the signal in cycle N would return
the signal value from cycle N — 1. In particular this
means that in cycle 0 an undefined value would be
read. Similarly, writing an outbound signal prior to
wait () would overwrite the value that has just been
written (lines 1 or 6).

The wait () statement in line 5 advances the simula-
tion time. The wait () method that is being used can
be actually any kind (static sensitivity, dynamic sen-
sitivity, time driven, etc.). See also [7] pp. 19 and [6]
pp- 82. The only restriction is that the thread is go-
ing to sleep for exactly the same time that matches
the explicit lookahead information for the changed
outbound signals that has been specified during the
setup phase (see later). Further this implies that all
outbound signals of a certain thread need to share
one and the same period.

For an example how such a thread is looking in prac-
tice refer to the example given later in this document.

Of course, application threads can also differ from
the template shown in listing 3 — as long as the
simulation semantics is respected.

6.5 Application Method Conventions
If SC_METHOD is used instead of SC_THRED, the tem-

plate layout follows exactly this one that is used to
describe registers for RTL synthesis [8].

14th February 2004
© Digital Force / Mario Trams

Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead 7

1 |<process...>; // read/write as wanted
2 | next_trigger(<for some time or some event>);

Listing 4: Template for Application Method

So there’s nothing special. next_trigger() is usu-
ally not present in synthesizable RTL code. It is not
required when the method is statically sensitive for
a clock.

Note that the first invocation of the method will re-
turn junk when it is reading inbound signals as well
as other local signals. However, that is normal for
this kind of description and is not associated with
distributed simulation. Usually one makes use of
some reset signal there, hence avoiding the evalua-
tion of uninitialized signals.

In listing 5 a more behavioral template of a method is
shown mimicking the behavior exactly as the thread
template in listing 3 does.

1 | if (<simulation time is zero>) {

2 <write initial values for outbound signals>;

3 |} else {

4 <process...>; // read/write as wanted

51}

6 | next_trigger(<for some time or some event>);
Listing 5: Alternative Template for Application
Method

7 Reference Implementation

The following subsections describe the implementa-
tion in more detail.

7.1 Outbound Synchronization
The algorithm that is associated with outbound syn-

chronization can be described by the pseudo code
shown in listing 6.

1 | while (1) {

2 wait(0); // for delta delay cycle;

3 wait(0); // for another delta delay cycle;
4 time = current simulation time;

5 while (time=—=

6 time stamp of an outbound signal) {
7 <read signal value>;

8 <send signal notification>;

9 <update signal time stamp>;

10

11 time = min(all outbound time stamps) — time;
12 wait(time);

13 |}

Listing 6: Outbound Sync Pseudo Code

The shown pseudo code is the body of a SystemC
thread and can be used

« on a per—outbound-signal basis (i.e. there is one
thread for each individual outbound signal)

« on a per—outbound-sync—module basis (i.e. there
is one thread for each outbound sync module
that handles all outbound signals attached to this
module)

« globally for all outbound signals.

Which one of these choices to use does basically not
matter. The current reference implementation makes
use of only one outbound synchronization thread
for all outbound signals. This minimizes the extra
scheduling overhead induced by the synchronization.

The two waits for a delta cycle at the beginning of the
processing loop are very important — at least one of
them. One delta cycle is required to ensure that all
application threads have been scheduled and the cor-
responding signals have been updated. The second
delta cycle attributes to the problem with in—time
signal processing and allows to handle applications
with at most one trigger indirection. Refer to sec-
tion 6.3 for details. For the case that it is not really
needed, the second wait() does cause no harm. It
just costs some time.

Note: As a simple workaround to allow more lev-
els of indirections it might me useful to extend the
thread in that way, that it can wait for an adjustable
number of delta cycles. The number would be set up
according the application needs somewhere during
the elaboration phase.

7.2 Inbound Synchronization

The pseudo code for the SystemC thread responsi-
ble for inbound synchronization does not differ very
much from outbound synchronization and is shown
in listing 7.

1 [while (1) {

2 time = current simulation time;

3 while (outbound sync not finished) {

4 wait(0); // for delta delay cycle;

5

6 while (time=—=

7 time stamp of an inbound signal) {
8 <receive signal notification>;

9 <update signal value>;

10 <update signal time stamp>;

11

12 time = min(all inbound time stamps) — time;
13 wait(time);

14 |}

Listing 7: Inbound Sync Pseudo Code

The actual algorithm is a little bit more complicated
because it has to respect the fact that signal notifi-
cations are received not necessarily in the expected
order.

Similarly as for outbound synchronization, this al-
gorithm might be used on a per—signal basis, a per—

i tal

Dig
EHERMEE

14th February 2004
© Digital Force / Mario Trams

8 Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead

module basis, or for all inbound signals. The current
implementation makes use of the latter approach.

While the outbound sync thread(s) play a more or
less passive role, the inbound sync thread(s) can be
considered more active. This is because they ba-
sically stop the simulation until appropriate signal
notifications have been received.

7.3 Data Transmission Medium

There are no special qualitative requirements and
almost any medium (including shared memory) or
communication library might be used. In fact, MPI
(Message Passing Interface) shows up some conve-
nient features. A successful combination of SystemC
and MPT has already been demonstrated in [9]. How-
ever, this first reference implementation makes use of

TCP/IP only.

7.4 System Setup

The synchronization infrastructure is being built up
by using various functions provided by the synchro-
nization library. This is done during the elabora-
tion phase usually inside sc_main() before the ac-
tual simulation is started by sc_start(). This is
the only occasion were the application programmer
needs to make use of special library functions.

The actions to be performed during system setup are
as following:

e A number of outbound sync modules need to be
created (number can also be zero).

e A number of inbound synch modules need to be
created (number can also be zero).

e A number of outbound signals need to be at-
tached to outbound sync modules. This also in-
cludes the specification of the signal period for
each individual signal (explicit lookahead infor-
mation). One and the same signal can be at-
tached multiple times to the same or multiple
outbound sync modules.

o A number of inbound signals need to be attached
to inbound sync modules.

e Once everything has been set up, all local in-
bound and outbound sync modules have to be
connected with their remote counterpart.

After connection of the distributed simulation ker-
nels it is neither allowed to create more inbound or
outbound sync modules, nor it is allowed to attach
any more signals.

7.5 Library Functions

Currently, the synchronization library provides the
following three functions:

e sc_dfsyncQ);
e attach(Q);

e sc_dfsync_conall();
A more detailed description is following here:

sc_dfsync(
int *status, int medium,
int designator,
char *remote_hostname = NULL,
int remote_port = 0

int direction,

)

sc_dfsync() is a constructor that is used to create
virtual instances of inbound or outbound synchro-
nization modules. The latter two arguments are used
for outbound modules only. The only supported pa-
rameter for medium is TCP so far. direction can be
either SYNC_IN or SYNC_OUT. The designator is an
unique identifier for the inbound or outbound mod-
ule to be created. The designator acts as some kind
of global identifier and has to match the designator of
the module’s remote counterpart. remote_hostname
and remote_port has to be specified in case of out-
bound modules. During the connection phase the
local simulation kernel will use this information to
connect the outbound module with the right remote
inbound module. status returns usually 0; or -1
when some error occurred.

int attach(
int designator, double period,
sc_signal<double> *signal

)

attach() is a public member—function of sc_dfsync.
When used with these arguments it attaches a lo-
cal signal as outbound signal to an outbound syn-
chronization module. Currently, the only supported
signal type is double. The designator is an
unique identifier within the corresponding outbound-
/inbound sync module context. period specifies how
many micro seconds the signal keeps its current value
at a time. attach() returns usually O or -1 when
some error occurred.

int attach(
int designator,
sc_signal<double> *signal

)

This version of attach() attaches a signal to an in-
bound synchronization module.

int sc_dfsync_conall(
int medium, int server_portnum

)

sc_dfsync_conall() is a friend—function of the
class sc_dfsync. This function connects all local
inbound and outbound sync modules with their re-
mote counterparts and returns when this task has

14th February 2004
© Digital Force / Mario Trams

i tal

Dig
EERMEE

Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead 9

been finished. The only supported value for medium
is TCP currently. server_portnum specifies a free lo-
cal TCP/IP port where a server is set up to listen
for connections from remote simulation kernels.

7.6 Implementation Details

Internal details of the reference implementation are
not to be disclosed here. Here are just a few words.

The most important things have been already dis-
cussed in sections 7.1 and 7.2. In the last phase
of sc_dfsync_conall() there are two SystemC
threads instantiated — one responsible for inbound
synchronization and the other for outbound synchro-
nization. That is, the distinction in unique inbound
and outbound module is merely a logical abstraction.
These threads handle data structures including vari-
ous information for specific signals as well as pointers
to these signals. This makes it possible to evaluate
and manipulate them.

The data structures are currently simple linked lists.
This is not very elegant and suboptimal. But it is
working fine for a first proof-of—concept.

8 Exemplary Use

Figure 2 shows an exemplary distributed system.

Modulel

Module 2

Const
(Val = 1)

Adder

- B
Reg F——
(nit=0) | & Lv

Fig. 2: Exemplary Distributed System

It is basically some kind of counter. In order to keep
the example simple, we want to distribute the com-
ponents across two SystemC simulation kernels as
shown in the figure. They could be spread across
more kernels, of course. An exception is that the
clock and the register can’t be put in different simu-
lation kernels with the current implementation (see
also section 6.3).

Anyways, with every rising edge of Clk the register
Reg shall pick up the output of Adder which adds
the Reg and Const (1 here). As a result, the content
of Reg is incremented with every rising clock edge:
0,1,2,3,4,5,...

The listing of the main program of Modulel is shown
in listing 8.

The code is not very complicated and basically self-
explaining. Note that the error—checking has been
skipped for this example. Normally, all relevant func-
tions return a status (either as return value or via
argument) in order to signal some problems.

The two outbound signals reg_out and const_out
are attached to the created outbound synchroniza-
tion module (named outbound_module here). The
update period of reg_out is specified with 100us.
As const_out will never change, we can basically
specify any arbitrary value different from zero. In
reality, one would chose a value as large as possible
in order to reduce communication to a minimum.

outbound_module is set to connect to port 10011 on
localhost. So both modules will run on the same
host. Of course, instead of localhost any arbitrary
hostname can be specified (provided the second mod-
ule will be started there).

The code for the actual register thread is shown in
listing 9.

This code does contain nothing special that would
mark it as specifically written for this distributed
application. I.e. there are no specific calls to some
synchronization functions. However, the code is fol-
lowing the strict layout that is required for proper
operation. It is also important that the update rate
(1004s) of the register matches exactly the value that
has been specified during attach() of reg_out. If
both do not match, the simulation will not work cor-
rectly.

For completion, the header file of the register is
shown in listing 10.

The according source code for Module2 is shown in
listings 11, 12, and 13.

Note that the adder is working with the double fre-
quency of the register (50us vs. 100us). This is
required because we are simulating on a Register
Transfer Level. The adder is considered as an asyn-
chronous element here. If the frequency of both
adder and register would be the same, the signal path
register—adder—register would take two clock cycles
instead of one only. Basically, it would be the same
effect when one would model a normal SystemC or
VHDL design where the logic between registers has
the same propagation delay like the clock period of
the registers.

Both SystemC simulation instances can be started in
arbitrary order.

i tal

Dig
EHERMEE

14th February 2004
© Digital Force / Mario Trams

10 Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead

#include "systemc.h”
#include "synchronize.h”
#include "clocked_reg.h”

int sc_main(int ac, char xav[])
{
// Some declarations.
int status;
sc_signal<double> reg_out;
10 sc_signal<double> reg_in;
11 sc_signal<double> const_out;

© o0~ Uk WN -

13 // Instantiate an outbound sync module. It is TCP/IP based and will connect
14 // to host localhost / port 10011. The module designator is 1.
15 sc_dfsync outbound_module(&status, TCP, SYNCOUT, 1, "localhost”, 10011);

17 // Attach our two outbound signals and specify periods (in us).
18 outbound_module. attach(1, 100, ®_out);
19 outbound_module. attach(2, 1000, &const_out);

21 // Instantiate an inbound sync module. It is TCP/IP based and the module designator is 1 here.
22 sc_dfsync inbound_module(&status, TCP, SYNC.N, 1);

23

24 // Attach the one and only inbound signal.

25 inbound_module.attach(1, ®_in);

26

27 // Connect all modules. Remote outbound sync modules have to connect to port 10010.

28 sc_dfsync_conall(TCP, 10010);

30 // Time base is lus.
31 sc_set_default_time_unit(1, SCUS);

33 // Create a clock: 100us period, 50% duty cycle, start at 100us
34 sc_clock clk("clk”, 100, SC.US, 0.5, 100, SCUS);

36 // Instantiate and connect the register component.

37 reg REG("reg”);

38 REG. clock(clk);

39 REG. reg_in(reg-in);
40 REG.reg_out(reg_out);

41

42 // Initialize the constant.
43 const_out.write(1);

44

45 // Start the simulation.
46 sc_start();
47 return O;

48 |}
Listing 8: Modulel Main Code

1 | struct reg : sc_module {
1 |#include "systemc.h” 2 sc_in<double> reg_in;
2 |#include "clocked_reg.h” 3 sc_out<double> reg_out;
3 4 sc_in_clk clock;
4 | void reg::process() 5
5| { 6 void process();
6 double regval; 7
7 // Specify an initial register content and 8 SCCTOR(reg) {
8 // init the SystemC signal as well. 9 SCTHREAD(process);
9 regval = 0; 10 sensitive_pos << clock;
10 reg_out.write(regval); 11 }
11 12 |}
12 while (1) {
13 // Just to display something: Listing 10: Register Header File (clocked_reg.h)
14 cout << "Time: " << sc_simulation_time()
15 <<" => Current Value of Reg is "
16 << regval << endl;
17 // Wait for our clock.
18 wait (); 9 Tasks to be done
19 // Update the register content.
20 regval = reg_in.read();
21 reg-out.write(regval); The library in its current form is not yet ready for
gg } } production use and its function calls are not yet en-

Listing 9: Register SystemC Thread

graved in stone.

Here’s a list of several first—order issues that need to
be solved:

14th February 2004
© Digital Force / Mario Trams

Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead 11

#include "systemc.h”
#include "synchronize.h”
#include "adder.h”

int sc_main(int ac, char xav[])
{
// Some declarations.
int status;
sc_signal<double> a_in, b_in;
10 sc_signal<double> sum_out;

© o0~ Uk WN -

12 // Instantiate an outbound sync module. It is TCP/IP based and will connect
13 // to host localhost / port 10010. The module designator is 1.
14 sc_dfsync outbound_module(&status, TCP, SYNCOUT, 1, "localhost”, 10010);

16 // The outbound signal sum_out is being attached to OutboundModule and

17 // will become updated every 50us.

18 outbound_module.attach(1, 50, &sum_out);

20 // Instantiate an inbound sync module. It is TCP/IP based and the module

21 // designator is 1 here.

22 sc_dfsync input-module(&status, TCP, SYNCIN, 1);

23 input_module.attach(1, &a_in);
24 input_module.attach(2, &b_in);
25

26 sc_dfsync_conall(TCP, 10011);
28 sc_set_default_time_unit(1, SC.US);

30 adder ADD(" adder”);
31 ADD.a(a-in);

32 ADD.b(b-in);

33 ADD.sum(sum_out);

34
35 sc_start();
36 return O;
37 |}
Listing 11: Module2 Main Code
e Other SystemC signal types need to be supported
1 [#include "systemc.h” rather than only double.
2 include "adder.h” . . .
3 #include "adder e The time—base that is currently fixed to micro
4 | void adder:: process() seconds is not acceptable.
5
6 // Initialize the output. e There are some hand work issues needed to be
g sum. write (0); done to improve the general performance. The
9 while (1) { current signal management is based on linked lists
10 // Wait 50us and ... and needs to be replaced by trees or other mech-
11 wait(50, SC.US); : ol T
12 // calculate the new output value. anisms yielding better scalability.
ﬁ sum.write(a.read() + b.read()); « Signal notifications do not always need to contain
15 |} a time stamp. For the current version that does
— not support the change of outbound signal update
Listing 12: Adder SystemC Thread rates it would be even sufficient to exchange this
information only once after connection.
o Support of other communication media such as
Shared Memory or MPI (Message Passing Inter-
1 | struct adder : sc_module { face). This includes the introduction of some kind
§ sc-in<double> a; of abstraction for connection and data transfers.
sc_in<double> b;
g sc_out<double> sum; o Do some benchmarking and compare some more
6 void process(); reasonable models (single vs. distributed Sys-
7 temC model) in terms of simulation performance.
8 SCCTOR(adder) {
18) SCTHREAD(process); Some second—order things are:
N o A mechanism for changing the outbound signal

Listing 13: Adder Header File (adder.h)

update periods during runtime could yield to
more flexibility as the application might want to
adapt this dynamically as needed. This would,

t al

Digi
EHERMEE

14th February 2004
© Digital Force / Mario Trams

12 Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead

however, require sync library calls outside the
elaboration phase.

o It would also be nice when the issue with the dis-
tribution of clock signals (see section 6.3.4) could
be solved. It has not yet been investigated in deep
detail and it is not clear whether it can be solved
without modifying SystemC. But it appears that
it will require the introduction of explicitly as-
signed signal priorities.

More distant ideas that come in mind are:

o It needs to be evaluated in more detail which ad-
ditions to SystemC would be needed in order to
implement some functionality more efficiently or
to solve some existing odds.

o It could be seriously considered to integrate the
synchronization directly into SystemC.

10 Related Work

After an intensive investigation there have been
found no suitable projects that deal with distributed
SystemC. In fact, this was the reason for the deci-
sion to rise up the project described herein. There
has been found a project of Masachika Hamabe [9]
that deals with the simulation of distributed Sys-
temC models that are connected via MPI. However,
this does not handle a common global simulation
time and is therefore only suitable for a very limited
class of applications.

A very promising practical implementation of dis-
tributed simulation is discussed in [3] and [4]. How-
ever, this project is aimed at VHDL and not at Sys-
temC. The authors discuss a mixture of conservative
and optimistic simulation that has a resolution down
to the delta cycle level. In order to meet their goals
they had to write a dedicated simulator core.

11 Conclusions

This paper has proposed a first version of a simple—
to—use library that can be used in order to spread
SystemC RTL models easily across multiple comput-
ing nodes. The simplicity has been shown with a
simple example.

The synchronization library is based purely on con-
servative distributed simulation. Vital timing infor-
mation is not determined by the simulator itself but
is specified by the model programmer once at the
beginning. For the actual model description the pro-
grammer is not concerned anymore with the distri-
bution. Though, he needs to follow a few simple
rules.

Further, the library can be used in junction with
standard SystemC implementations without the
need to modify them.

The use of the synchronization library is not only
limited to the distribution of a big SystemC model
across many computers or to interface a SystemC
model with other simulation cores. The library has
also a potential to be used as interface to online vi-
sualization modules as well as interactive input mod-
ules.

References

[1] Avrois FERSCHA: Parallel and Distributed Simulation of
Discrete Event Systems.
Contribution to the “Handbook of Parallel and Distributed
Computing”, McGraw-Hill, 1995

[2] RiCHARD M. FuJIMOTO: Parallel and Distributed Simula-
tion.
In proceedings of the 1999 Winter Simulation Conference

[3] DraGOs LUNGEANU AND C.J. RICHARD SHI: Distributed
Simulation of VLSI Systems via Lookahead-Free Self-
Adaptive Optimistic and Conservative Synchronization.
In proceedings of ICCAD, 1999

[4] DrAGOS LUNGEANU AND C.J. RICHARD SHI: Parallel and
Distributed VHDL Simulation.
In proceedings of Design, Automation and Test in Europe
Conference (DATE’00), Paris, France, March 2000

[5] STUART SwAN: An Introduction to System Level Modeling
in SystemC' 2.0.
Cadence Design Systems, Inc. May 2001, Open SystemC
Initiative (OSCI)

[6] SystemC 2.0.1 Language Reference Manual.
Revision 1.0, 2003, Open SystemC Initiative (OSCI)

[7] FUNCTIONAL SPECIFICATION FOR SYSTEMC 2.0
(Update for SystemC' 2.0.1).
Version 2.0-Q April 5, 2002, SystemC Language Working
Group

[8] Describing Synthesizable RTL in SystemC.
Version 1.2, November 2002, Synopsys, Inc.

[9] SystemC project website of Masachika Hamabe:
http://wwwba.biglobe.ne.jp/ hamabe/SystemC/

14th February 2004
© Digital Force / Mario Trams

