
Computer Architecture Technical Report

TUC / RA-TR-2002-03

Date: 17th December 2002
(Last Build: 7th April 2003)

Feasibility of PACX–MPI for use in a
Cluster–of–Clusters Environment

Mario Trams

Mario.Trams@informatik.tu-chemnitz.de

EH I TCRA K T U R

Chemnitz University of Technology

Department of Computer Science

Computer Architecture

Prof. Dr. W. Rehm

RA-TR-2002-03 1

Feasibility of PACX–MPI for use in a
Cluster–of–Clusters Environment

Mario Trams

Mario.Trams@informatik.tu-chemnitz.de

Abstract
There are several existing concepts and solutions that are intended for coupling several parallel com-
puters in means of running a single MPI application on top of them. PACX–MPI [1] is one of them
that relies on existing MPI libraries on the respective machines.
This paper discusses several facts and aspects for using PACX–MPI in an Cluster–of–Clusters (CoC)
environment.

1 Introduction

There are several papers available from the PACX
developers that provide a comprehensive view into
internals and performance of PACX (some of them
are [3], [4], [5], [6]). This paper is not intended to dis-
cuss internals of PACX in detail. Rather it focuses
on the special implications for its use on cluster sys-
tems.

At the beginning, this papers gives a short overview
on the use of PACX in a CoC environment that
differs only marginally from the use in a cluster of
MPPs. The second part describes various limitations
of PACX that mostly appear when used in a CoC en-
vironment which is interesting for us. The third part
describes some proposals how PACX can be changed
and what can be added in order to improve it for
better use in CoCs (while having no negative impact
on the use with MPPs, of course). Finally, the last
part suggests some concrete tasks for enhancements
of PACX in the short–term future.

2 Basic PACX–MPI Operation

The principle operation of PACX–MPI (PArallel
Computer eXtension; in the following text just called
PACX) is quite easy. Figure 1 illustrates a setup
with three different clusters or parallel computers in
general.

In our case all three parallel computers or clusters
are equipped with some kind of local communication
network. As illustrated by figure 1, these networks
can be completely different. At least one machine
of each cluster needs to have a connection to the
rest of the world. In most cases this will be a TCP
connection but ATM is supported as well (version
4.1.41). The “rest of the world” can be the whole
Internet. A common intranet could do the job as
well.

1everything described within this paper will assume PACX
4.1.4

All of the included parallel computers require a run-
ning MPI (MPI–1 compliant) that can be basically
of any flavor. I.e. a proprietary MPI developed for
this specific parallel computer or a more generic one
— e.g. MPICH. Such an MPI is called native MPI
as it is running natively on this machine.

It is a remarkable feature of PACX that it only re-
quires an MPI as underlying system infrastructure.
Neither PACX–specific daemons are required that
run in background on some or all nodes, nor a mul-
titasking operating system in that sense is required.
All that is required are MPI libraries and the smallest
program–unit PACX deals with is an MPI process.
Hence, everything that is required besides applica-
tion computing is derived from the pool of available
MPI processes. Of course, this does not exclude the
possibility to create new processes or threads when
the underlying system does allow it.

2.1 Application Compilation

Most of the things described here are a short recap
of [2].

Before applications can be compiled, PACX itself
has to be compiled and linked against the na-
tive MPI. Building the PACX libraries is relatively
easy. The following example builds the PACX
libraries based on a MPICH-1.2.4 installation in
/home/ra/mtr/MPI/MPICH-1.2.4 and installs them
in /home/ra/mtr/WORK/PACX MPICH-1.2.4/.

./configure
--prefix=/home/ra/mtr/WORK/PACX_MPICH-1.2.4
--with-mpi-dir=/home/ra/mtr/MPI/MPICH-1.2.4
make ; make install

There are no other options required, although there
are some MPICH–specific configure options (refer to
[2] for more details).

Of course, compilation of PACX has to be done for all
machines with their respective native MPI involved
in the meta computer later.

Chemnitz University of Technology, Date: 17th December 2002
Chair of Computer Architecture Built: 7th April 2003

2 RA-TR-2002-03

Cluster A

Cluster C

Cluster B

PACX In−Server

PACX Out−Server

Common Network
("Internet")

Fig. 1. Exemplary PACX Setup with three Clusters

Now, a standard MPI application can be compiled
using the pacxcc script placed in
/home/ra/mtr/WORK/PACX MPICH-1.2.4/bin:

pacxcc app.c -o app

(Path has been omitted here.)

The application has to be compiled on all required
architectures as well.

Note: In some cases it is required to extend the
pacxcc script or a Makefile when used alternatively.
Sometimes native MPIs require additional libraries
to be linked besides the MPI library (so in case of
SCI–MPICH where SMI and SISCI is required as
well). However, adding additional library paths and
libraries is rather easy.

2.2 Starting Applications

There’s one basic thing for application startup: On
each parallel computer the application has to be
started with the startup mechanism provided by the
native MPI of the respective machines. I.e. there is
no pacxrun or something like that.

For parallel computers that feature a single Internet
address for all nodes PACX offers a mechanism for an
automatic startup. That is, the application just has
to be started on one of the involved parallel comput-
ers. It will then automatically log into the remaining

foreign machines to start up the application there.

Unfortunately, this is not possible in a conventional
cluster as each node has a single IP address. So an-
other mechanism has to be used instead that is work-
ing as follows:

• A so–called Startup Server has to be started on a
“normal” computer known to all involved parallel
computers. The startup server can be compiled
independently from the actual PACX because it is
a completely separate program and does not deal
with native MPIs at all. An option for the startup
server specifies the number of parallel computers
involved in the meta computer.

startupserver 2

configures the server for 2 parallel computers.

• When one part of the application has been started
on a parallel machine, it parses .hostfile. This
file is normally located in the directory of the ap-
plication binary and contains information about
the startup server and the rank of this parallel
computer starting at 0. So if we consider two par-
allel computers, their .hostfile content could
look like the following:
.hostfile of first machine:
Server jack 0

.hostfile of second machine:
Server jack 1

Date: 17th December 2002 Chemnitz University of Technology,
Built: 7th April 2003 Chair of Computer Architecture

RA-TR-2002-03 3

So the first cluster gets rank 0 in the “Meta–
world” and the second rank 1. As the first
cluster has rank 0 this means that all ranks in
MPI_COMM_WORLD of user processes running on the
first cluster will be smaller than those running on
the second cluster.

• The startup server will wait until the number
of expected machines have connected to it and
will send some acknowledge back to each machine
containing information about the single machines
(number of MPI processes, addresses of special
nodes, etc.).

• When all connections are established the MPI ap-
plication can run as usual.

This startup process is, of course, completely trans-
parent for the MPI application.

2.3 Inter–Cluster Communication

As the application has been linked against the PACX
library, all calls to MPI routines are actually calls to
PACX. When an MPI call is made by the application
(say MPI Send(), for instance), PACX can determine
whether this is a local transaction on this cluster, or
it requires communication with another one. In case
of the local transaction PACX can pass the operation
to the native MPI that sends it to the receiver located
within the same cluster.

In case of a “global” transaction it has to be feed
somehow to the respective node on the other clus-
ter. Say, for instance, a message has to be sent from
a node within cluster A to a node within cluster B
(referring to figure 1). This is done by first forward-
ing the transaction via native MPI of A to that node
in the cluster that has an PACX Out Server running.
The PACX Out Server of A will feed the transaction
via TCP/IP or ATM to a node of B that has an
PACX In Server running. The PACX In Server of B
can forward the message via the native MPI of B to
its final destination.

As illustrated by figure 1, each cluster has one pair
of in– and out–servers running. For the native MPI,
these servers are treated as regular application pro-
cesses. Each out–server has a connection to all in–
servers and hence there is an overall N:N connectiv-
ity of the clusters (in figure 1 illustrated by dotted
lines). It is not necessary to mention that all in– and
out–servers have to reside in the same name space
(i.e. direct access to the Internet). Although figure
1 shows both in– and out–servers in a single node,
it is well possible to have them running on different
nodes.

These nodes that have an in– or out–server running
are also referred as gateway nodes in the following
text. The remaining nodes that have the real ap-
plication code running are also referred as compute
nodes.

The gateway nodes usually have no application code
running.

2.4 A first Conclusion

First of all there’s to say that PACX is definitively
able to provide a sufficient framework for merg-
ing clusters consisting of different architectures right
now. This is possible thanks to the all–over present
TCP/IP.

3 Limitations of PACX–MPI

3.1 Inter–Cluster Communication
Medium

As mentioned previously, TCP/IP or ATM are avail-
able for inter–cluster communication. While this (at
least TCP/IP) is an absolute must for meta comput-
ing in sense of a worldwide coupling, it doesn’t make
use of the availability of high speed system area net-
works in the field of CoC systems.

Fortunately, this is not a real conceptual limitation
as implementing alternative communication devices
(Myrinet, SCI, InfiniBand, ...) shouldn’t be that
problem (see below).

3.2 Direct Inter–Cluster Communica-
tion

The concept of PACX requires a direct communica-
tion path between all in– and out–servers. This im-
plies that the CoC framework must feature a single
inter–cluster communication network.

This is because PACX lacks support of bridging
between different inter–cluster networks. In other
words, PACX requires a flat inter–cluster communi-
cation network without any additional routing hops.

A scenario which would require such a mechanism in
a CoC–context is not very unrealistic. Just imagine
two clusters A and B that might communicate via
physical network 1. Now another cluster C needs
to be integrated that is located a little bit far away
from the other two clusters (say in another room).
At least it is far enough located so that the use of
network 1 is prevented because too long cables would
be required. Another physical network 2 would have
to be used instead. This network could, for instance,
connect clusters A and C. Figure 2 illustrates this
example.

So messages that are to be exchanged between clus-
ters C and B have to make an additional “hop” over
cluster A.

Exactly such structures are not supported by PACX
yet. They could be realized when TCP/IP is being

Chemnitz University of Technology, Date: 17th December 2002
Chair of Computer Architecture Built: 7th April 2003

4 RA-TR-2002-03

Cluster C

Network 2

Cluster B

Network 1

Cluster A

Fig. 2. Example with different Inter–Cluster Networks

emulated over different networks, but that is far from
high–performance.

Note: It should be mentioned that PACX was
never targeted for such configurations. Therefore it
would be presumptuously to call this a weak point
of PACX.

3.3 Startup Issues

As described previously, the startup server approach
has to be used for starting the PACX framework
on cluster systems. This is because PACX doesn’t
know the IP addresses of in– and out–servers prior
to startup. Currently, PACX makes the follow-
ing assignment: The MPI process with rank 0 of
MPI_COMM_WORLD will become the out–server and
the process with rank 1 the in–server (defined in
include/pacx.h).

The problem is that the user does not have a direct
influence on rank assignment. But in case of a CoC
this is a crucial point as the servers have to be lo-
cated on these nodes that maintain the fast intercon-
nection to other clusters. Therefore it is absolutely
required to have control over these decisions (at least
indirectly, better directly).

Note: This is no problem as long as the whole CoC
is covered by a single IP subnet and there is no spe-
cial inter–cluster communication hardware but sim-
ple TCP/IP. In such a configuration each node can
be a potential in– or out–server.

In case of MPICH, ranks seem to be numbered in
the same order as they appear in the machine–file or
.pg–file. So one can indirectly force the servers to
be placed on desired nodes. However, it is not clear
whether this can be generalized for all MPI imple-
mentations. Neither MPI–1.1 [10] nor MPI–2.0 [11]
standards define a rule for initial rank assignment.
Instead, MPI–1.1 states ([10], page 12, position 34):

MPI does not provide mechanisms to spec-
ify the initial allocation of processes to an
MPI computation and their binding to physi-
cal processors. It is expected that vendors will
provide mechanisms to do so either at load
time or at run time.

This doesn’t explicitly speak about ranks, but they
are included implicitly. MPI–2 does not put any re-
quirements on the process startup either. So finally,
each specific implementation of MPI may behave dif-
ferent in this point. And even more worse, some im-
plementations might behave non–deterministic leav-
ing the user no chance for any indirect rank assign-
ments.

3.4 Difficulties with Batch Systems

Using PACX on a couple of parallel computers with
independent batch systems is somewhat problematic.
The only way using PACX in such a fashion would
be the startup server mechanism where the startup
server has to be started independently from the batch
system(s) (e.g. on the users workstation). The au-
tomatic startup mechanism shortly described at the
beginning of this paper does require an interactive
access (remote shell) that is not working with batch
systems. PBS [12], for instance, provides a mecha-
nism for interactive jobs. Anyways, the actual prob-
lem is to get an interactive shell on all machines at
the same time (see below).

In fact, a short investigation has shown that nobody
seems to have used PACX in junction with batch
systems.

Principally, there are no technical reasons that would
speak against batch systems (we never tested it).
However, there is an obvious machine utilization
problem when all partitions of the PACX framework
are not brought up within a short period. The ac-
tual application processing can begin once all partici-
pating partitions on various parallel computers have
been started and all logical connections have been
established.

So when one partition A comes to execution and
another partition B is still waiting somewhere in a
queue, A will block its machine without doing any-
thing. And this problem is the same whether the
batch system provides the capability for interactive
jobs or not.

Note: Actually, this is a general problem not only
dedicated to PACX.

4 How to cope with these Lim-
itations?

4.1 Add more flavors of Inter–Cluster
Communication

As previously mentioned, PACX could be expanded
in a way to support just more kinds of communi-
cation networks for communication between clusters
— in particular SANs. This should not have any
conceptual impact on the PACX design at all. The
sources of PACX are kept very modular in that point.

Date: 17th December 2002 Chemnitz University of Technology,
Built: 7th April 2003 Chair of Computer Architecture

RA-TR-2002-03 5

Therefore an integration of new media should be lim-
ited to the development of the communication rou-
tines and only minor changes on PACX itself.

Today, the most interesting candidates for new com-
munication hardware seem to be Myrinet, SCI, and
InfiniBand as it slowly evolves. Another interesting
approach would be to use shared memory (i.e. stan-
dard SystemV shared memory) for communication.
Figure 3 illustrates such a configuration.

Cluster A

Cluster B

PACX In−Server

PACX Out−Server

Fig. 3. Illustration of a Shared–Memory based coupling

There are two clusters, each equipped with different
communication hardware. Both clusters have one
node common that is equipped with both types of
communication hardware. This node has running
in– and out–servers for both clusters, and, of course,
both native MPIs. Therefore messages that have
to cross the cluster boundaries can be routed com-
pletely internally from out– to in–server via a shared
memory protocol.

Note: One of the server pairs shown in figure 3 log-
ically belongs to cluster A, and the other pair to
cluster B!

Although this most likely leads to a bad scalability
especially in view of technical/mechanical issues, it
appears to be a nice and fast mechanism for coupling
of two or three clusters.

4.2 Make use of abstract Inter–
Cluster Communication

Besides adding capabilities for support of various
technologies, it might be interesting to use a more
generalized and abstract communication library. Of
course, TCP/IP can already be considered as a
method for communication with a high degree of ab-
straction. Messages can traverse an almost arbitrary
number of almost any kind of hardware types while
keeping this completely transparent for the using ap-
plication. However, it is not any longer a secret that
TCP/IP is not very well suited for use in system area

networks due to high latency. Hence, the capabili-
ties of the underlying physical media cannot be fully
exploited.

But there are other projects that aim on ab-
stract communication between nodes in a hetero-
geneous network environment. Two very ambitious
projects in this area are Madeleine [7] and VMI [8].
The goals of both projects are similar: Develop-
ing a high–performance communication middleware
that provides a virtualized/abstracted communica-
tion method on top of a bunch of real–existing sys-
tem area networks.

Both Madeleine and VMI are intended as direct com-
munication base for higher level libraries such as
MPI. In fact, for both there is, respectively, a slightly
modified version of MPICH available. Madeleine in
its current version (III) is also capable of acting as
gateway among different types of networks (refer to
[7] for details). In case of VMI such functionality
has been evaluated for VMI–1 [9], but it is not yet
implemented in VMI–2.

The last paragraph describes that there already ex-
ists the capability of spanning a single MPI frame-
work over a CoC system while making use of high
speed system area networks. Hence, the adoption of
PACX for that purpose might seem not necessary.
However, using PACX for that purpose has the plus
that it would be possible to use clusters with propri-
etary communication hardware and MPI libraries in
a CoC context. Basically, this seems to be possible
to achieve with VMI and Madeleine as well by using
MPI as communication medium just as PACX does.
But that is another story.

In case of using VMI or Madeleine in junction with
the provided MPICH for running on a CoC, each
node would have to run VMI or Madeleine function-
ality. In case of using one of these mechanisms just
for inter–cluster communication in PACX, only the
gateway nodes would be involved here (i.e. only the
gateway nodes need to run VMI or Madeleine soft-
ware).

The good thing with such a mechanism would be
that PACX and in particular the in– and out–servers
do not need to deal with things like message rout-
ing and line balancing as this is already provided by
the middleware. Madeleine and VMI provide appro-
priate topology–description mechanisms as well. So
add–ons and modifications of PACX itself should be
held at a minimal level. The required efforts should
be comparable to an integration of a special inter–
cluster communication medium (e.g. Myrinet).

The only question that remains is whether such a
design would be associated with a significant drop of
performance or not (for whatever reasons).

Chemnitz University of Technology, Date: 17th December 2002
Chair of Computer Architecture Built: 7th April 2003

6 RA-TR-2002-03

4.3 Let PACX do the Routing

It is possible to let PACX do all the work by itself.
That is, each subcluster of a CoC that has a connec-
tion to N external SANs would have to run N pairs
of in– and out–servers.

Figure 4 illustrates an example of such a configura-
tion.

Cluster A

C
lu

st
er

 Z

Network 2

Network 1

Cluster YCluster X

Fig. 4. CoC with different Inter–Cluster Networks in the same
Node

In this example one Node of cluster A has two
types of network adapters intended for communica-
tion with other clusters. For each network there’s a
separate pair of in– and out–servers.

When an in–server receives a message (say from net-
work 1) and it is not intended for a compute node
within this cluster, the in–server would forward the
message to another out–server. This is nothing more
than transaction routing on a different level than
already performed by PACX (deciding whether a
transaction has to be forwarded to an out–server on
a gateway–node or to a regular compute node).

Cluster A

C
lu

st
er

 Z

Network 2

Network 1

Cluster YCluster X

Fig. 5. CoC with different Inter–Cluster Networks in different
Nodes

Figure 5 shows another possible scenario where two
nodes in cluster A have different connections to other
clusters. While in figure 4 shared memory could be

used for transferring messages from an in–server to
an out–server, the native MPI would have to be used
in case of figure 5.

The exemplary configuration shown by figures 4 and
5 could be even more generalized as well. E.g.

• there could be more than two external networks
for one cluster

• in– and out–servers of the same external network
must not necessarily be located on the same node

• a transaction might need to cross multiple clus-
ters before arriving at the final one

• etc.

So an in–server has to answer two questions when it
has received some message that was identified as one
not intended for a compute node within this cluster:

• To which out–server (residing within this cluster)
the message needs to be forwarded?

• What about the connection to this out–server?
(In which way the message has to be forwarded?)

For the latter one there are basically two options:

1. The out–server is located at another node on this
cluster and the connection to this one is based on
the local native MPI.

2. The out–server is located at the same node and
messages can be forwarded via shared memory.

Note: A third option might come in mind where
the out–server is reached neither via native MPI nor
via shared memory. This is actually not a valid one
and can be ruled out. The reason is that because
by definition an in–server can forward messages only
to a node inside the cluster it belongs to. A node
that is reached neither via native MPI nor via shared
memory cannot be part of the same cluster.

Besides these extended routing mechanisms in the
server nodes the routing decisions of PACX running
on regular compute nodes becomes more non–trivial
as well. PACX has not just to decide whether a mes-
sage has to be sent to another compute node or an
out–server. In addition, it has to choose among sev-
eral out–servers.

4.4 Modify the Startup Procedure

Regarding the startup and server assignment prob-
lem, the startup process of PACX could be slightly
enhanced so that the user can directly specify on
which nodes the in– and the out–server have to be
located.

A direct but optional specification of the host name
for in– and out–server (both separately) would pro-
vide much more flexibility. In these cases where
the native MPI cannot be forced to assign ranks

Date: 17th December 2002 Chemnitz University of Technology,
Built: 7th April 2003 Chair of Computer Architecture

RA-TR-2002-03 7

to processes on special nodes it would be a require-
ment. A definition of these nodes could be made
inside one of the two existing PACX configuration
files (.hostfile or .netfile), or in another file if
something would speak against the integration into
the existing files.

Note: Handling such assignments is not necessar-
ily trivial as we have to consider SMP systems as
well. That is, when a configuration file states that
an in–server has to be located on node foo, only one
process on node foo has to become in–server (same
for out–server).

Another reason for a direct specification of the server
nodes is to enable the automatic startup process as
well for cluster systems. With a definition of the cor-
responding host names in a configuration file, PACX
would have all the required information and there
is a chance to bring it up on clusters without the
annoying startup server.

4.5 The Batch System Problem

First of all it is to say that this problem is not that
urgent in a CoC environment. It should be very likely
that a single batch system can be used here that
manages all clusters.

Nevertheless, caution must be taken here when the
batch system treats individual partitions of a PACX
framework as individual applications that are to be
started on different clusters of the CoC. Actually, the
batch system has to be aware of the dependencies
and should bring all single partitions to execution at
once.

Besides this, it would be a useful feature when the
batch system picks up all the work required for par-
titioning the application. At least todays batch sys-
tems perform an automatic assignment of compute
nodes. In addition to this, the following tasks could
be done by such a system:

• Distribute the application transparently across
several sub–clusters of the CoC.
This includes the automatic generation of appro-
priate configuration files (not just for PACX, but
for the native MPIs as well).
Due to the heterogeneous nature of a CoC, the
user should be able to request specific sub–
clusters (for whatever reason; e.g. performance).

• Perform some kind of on–demand compilation of
the application. This means that a user provides
the source code instead of binaries and the batch
system compiles them when needed.

It is not known to the author whether existing batch
systems such as PBS [12] already offer functionality
in these directions or how complicated it is to add
such features. Therefore some further investigation
and analysis has to be done here.

5 Suggestions — What to do
next?

In order to get more confident with PACX, the im-
plementation of a shared memory communication be-
tween out– and in–servers appears to be a good idea.
The benefit of starting with shared memory instead
of other mechanisms would be that it is a very “gen-
tle” mechanism that does not bring things like un-
reliability into the game. When using SANs, one
usually has to care about this special behavior and
have to work around that bug etc. This makes the
actual design more complicated than it appears in
theory.

Once a shared memory bridging is working, other
types of communication networks could be integrated
as well.

However, the most interesting issue is to deal with
the problem that PACX currently requires a flat
inter–cluster communication network. Two differ-
ent ways to work around this have been roughly dis-
cussed in this paper. Although it should have no
major impact on the PACX core itself, an integra-
tion of the routing mechanisms into PACX seems to
be a quite heavy task.

So in view of this particular problem interfac-
ing PACX with one of the mentioned communica-
tion middleware frameworks appears to be the first
choice. A more detailed analysis on how to imple-
ment such an interface will show whether there pop
up some problems that are not seen at this time.
Today, at least, there is no fundamental problem
visible. Once it has been implemented, benchmarks
will show the performance of such a system. For
the case that there are major bottlenecks detected
(for whatever reason), it should be considered to in-
tegrate such functionality more deeper in PACX as
described herein. Perhaps major parts of the existing
middleware could be reused for such an extension.

Enhancing the startup procedure of PACX by spec-
ifying host names for the servers as described would
be a task that is somewhat independent from others.
As discussed earlier, it is not necessarily required as
long as there is a way for assigning ranks to nodes.
A mechanism for explicit placement of servers would
become required when PACX itself becomes respon-
sible for routing and gatewaying between different
clusters. Here not only the location of the servers has
to be specified, but the type of connection between
them as well. In other words, the whole topology of
the CoC infrastructure has to be provided as input
for the PACX system.

Having the automatic startup procedure in mind,
the capability of a direct specification of sever nodes
would be a valuable feature — even when the de-
cision is made to go for a middleware approach re-
garding heterogeneous inter–cluster communication.
When it turns out that a middleware approach is not

Chemnitz University of Technology, Date: 17th December 2002
Chair of Computer Architecture Built: 7th April 2003

8 RA-TR-2002-03

a good choice (for whatever reason), it would be even
more important to have such a mechanism ready so
that it can be extended towards a complete topology
description. So a development in this direction could
be done in parallel to others.

6 Conclusions

This paper gave an overview on the implications of
using PACX in a Cluster–of–Clusters environment.
While PACX is basically capable to be used in such
a context where it actually was not specifically de-
signed for, there are some obstacles that were dis-
cussed herein.

Of course, possible solutions for these were given as
well. In order to provide a short view of actions to do,
here’s a summarizing list of the author’s suggestions:

• add more Inter–Cluster communication media;
start with a Shared Memory connection

• let the PACX server nodes be running on top of
a middleware layer for heterogeneous communi-
cation (e.g. VMI, Madeleine, or others)

• alternatively (or concurrently?) add more rout-
ing and gatewaying functionality to PACX

• implement a mechanism for better specification
of server node location and application startup

• analyze the batch system issue in more detail

References

[1] PACX website:
www.hlrs.de/organization/pds/projects/pacx-mpi/

[2] PACX User Manual
<PACX Source>/doc/pacx.ps

[3] Thomas Beisel, Edgar Gabriel and Michael Resch: An Ex-
tension to MPI for Distributed Computing on MPPs.
In Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, Lecture Notes in Computer Science.
Springer, 1997.
www.hlrs.de/people/resch/PAPER/PVMPI97/pvmmpi.ps

[4] Edgar Gabriel, Michael Resch, Thomas Beisel and Rainer
Keller: Distributed Computing in a Heterogeneous Com-
puting Environment.
In Proc. 5th European PVM/MPI Users’ Group Meeting,
number 1497 in LNCS, pages 180– 187, Liverpool, UK,
1998.
www.hlrs.de/people/gabriel/PAPER/liverpool98.ps

[5] Michael Resch, Thomas Beisel, Holger Berger, Katrin Bid-
mon, Edgar Gabriel, Rainer Keller and Dirk Rantzau: Clus-
tering T3Es for Metacomputing Applications.
In Cray User Group Proceedings, 1998.
www.hlrs.de/people/resch/PAPER/CUG98/

[6] Edgar Gabriel, Michael Resch and Roland Rühle: Imple-
menting MPI with Optimized Algorithms for Metacomput-
ing.
In Proceedings of the Third MPI Developer’s and User’s
Conference. MPI Software Technology Press, 1999.
www.hlrs.de/people/gabriel/PAPER/atlanta99.ps

[7] Madeleine website:
www.ens-lyon.fr/~mercierg/mpi.html

[8] VMI website:
vmi.ncsa.uiuc.edu

[9] Sudha Krishnamurthy: Design of a Gateway Protocol us-
ing VMI for Inter–Cluster Communication.

Technical Report, NCSA and Department of Computer Sci-
ence, University of Illinois, Dec. 1999.

[10] Message Passing Interface Forum: MPI: A Message–
Passing Interface Standard (MPI–1.1), June 12, 1995.

[11] Message Passing Interface Forum: MPI–2: Extensions to
the Message–Passing Interface (MPI–2.0), July 18, 1997.

[12] Portable Batch System website:
www.openpbs.org

Date: 17th December 2002 Chemnitz University of Technology,
Built: 7th April 2003 Chair of Computer Architecture

