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Abstract

Scope of this paper is the discussion of the basic principles as well as an actual implementation of a tiny
real time multi tasking kernel for small embedded applications. Although it does not provide the same
functionality as known from ”regular” operating system kernels, the presented kernel can be considered
as some kind of a micro kernel. Despite the fact that this work does not present fundamentally new
concepts, it has been found worthwhile publishing this design in a comprehensive form, hence making

it available for the world.

1 Introduction

When speaking about small embedded systems I'm
referring to midrange—class micro controllers such as
PIC—, ATmega—, or 8051-based systems.

Typically, implementing (pseudo-) concurrency in a
very simple way is by making use of timer interrupts,
or interrupts in general.

When there are some things to be done periodically,
you could make use of a simple timer interrupt. For
instance, when there are two routines A and B to
be executed regularly, you could call A in every even
occurrence of the timer interrupt and B in every odd
occurrence. This limits the run time of routines A
and B to at most one timer interval, which might be
difficult to guarantee. Furthermore this approach is
not really useful for implementing multiple persistent
tasks.

Yet another way is to implement this pseudo—
concurrency within a main software loop. But here
it is also quite difficult to achieve a reasonable task
or function scheduling. Just imagine again two func-
tionalities A and B that are to be embedded into a
single endless loop. Sometimes A is blocking because
it is waiting for something. So does B. It might be
possible to implement such a system, but it will usu-
ally result in a complete mess of nasty and mostly
unreadable code. Much of the code will take care
about the scheduling and the actual functional flow
of A and B won’t be visible at all. In case of a strong
interaction between the involved tasks some kind of
coroutine-model might be ok. But this definitively
does not work well for multiple and formally inde-
pendent tasks.

As T will show throughout this paper, it is possible
to implement a simple multi tasking mechanism with
little effort even for small embedded systems. The
presented system is targeted for 8051-based micro
controllers and requires a stunningly low amount of
less than 600 bytes of code. Furthermore this system
has been extensively analyzed regarding its timing
behavior and therefore is a good base for fine-grained

real time applications.

First of all, this paper will provide a short overview
for the basic requirements of the kernel. Next some
basic principles and features are discussed, before I
describe the actual implementation and various de-
tails of it. A discussion of timing aspects is included
as well, which is important for real time applications.
The paper rounds up with the kernel API description
and a small exemplary firmware design making use
of the kernel.

Apart from the technical aspects this paper has been
written to be somewhat self-containing. That is, the
reader does not need to have a larger background in
operating system theory — although this would be
a plus, of course.

2 Basic Requirements

2.1 Reduce to the Essentials!

When it is coming to rather small systems having
just a few kilobytes of code and data memory it is
really crucial to keep unnecessary expenses at an ab-
solute minimum. From a formal point of view, any
kind operation system is unnecessary. Nonetheless
an operating system is important because it is help-
ing to structure complex systems, hence making the
overall system more understandable and less error-
prone by reusing well-understood and approved basic
function blocks. Usually, operating systems provide
a vast amount of functionality. But for a multi task-
ing operating system there is just one essential func-
tion to be provided: Transparently achieve a pseudo-
parallel execution of multiple threads or tasks.

Exactly this target is aimed by the work presented
here. Nothing more. All other things one might ex-
pect from something called ”operating system” such
as input/output, communication between tasks etc.
is left for the actual application. So what is get-
ting outsourced from the system/firmware designers
point of view is purely the multi tasking functional-
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ity.

2.2 Task Model

The task model is to be fairly simple and as usual:
Each task has its root function, essentially represent-
ing the task. There is no difference when compared
to processes or threads on regular operating systems.

What is surely missing is a protection/isolation of
different tasks from each other and the kernel itself.
That is, a single task can easily disturb or crash other
tasks or the whole firmware. This is no artificial re-
striction. It is coming from the fact that tiny mi-
cro controllers do not provide mechanisms such as
virtual memory or privilege levels. Even though it
would be nice having these features, this lack of pro-
tection does not pose a disadvantage when compared
to traditional firmware coding.

2.3 Preemptive Scheduling Model

Actually, this is a trivial conclusion coming from the
requirement for a transparent multi tasking. I.e. the
single tasks do not necessarily need to be aware of
the fact that there are running other tasks besides
them. That is, sooner or later a running task will be
temporarily forced to sleep while another task will
resume its operation.

As I will show later, a commonly used time slice
mechanism has been employed here.

2.4 Target Architecture

The kernel has been primarily targeted for the 8051
processor architecture, and in particular the FX2LP
from Cypress Semiconductor [1]. Although a few
FX2LP-specific functionalities have been used, it
should be easily portable to other 8051-based archi-
tectures.

Due to efficiency, much of the code has been written
in (inline) assembly language. This makes it more
difficult to port the kernel to other processor archi-
tectures. However, as this kernel is rather small and
just consists of a hand full of rather short functions,
it should be no big deal to port it to almost arbitrary
architectures. The only prerequisite is that these
other target architectures provide similar or better
stack manipulation mechanisms as the 8051 does.

2.5 Programming Language

The preferred language is C. As compiler for this spe-
cific FX2LP implementation the free Small Devices
C Compiler (SDCC [2]) has been chosen. This one is
doing a fairly good job. With little modifications it
should also be compatible with other compilers such
as KEIL.

2.6 All-in—one Compilation

Usually, for small embedded applications designed
to serve a specific function there is no need for an
on-demand program loading. There is just a single
persistent firmware that is consisting of the kernel,
a couple of application tasks and possibly some ad-
ditional application-specific stuff such as interrupt
routines.

Furthermore it is assumed that there is a fixed num-
ber of tasks that is known at compile time. That is,
neither a task can terminate in that sense, nor new
tasks can be spawned dynamically. Perhaps this is
worth to be considered for a future enhancement, as
this is a quite useful feature.

This allows to consider the whole firmware as a single
project that becomes compiled in one piece. So there
is no need for relocatable code.

Another advantage of such a design is that various
settings and adjustments can be done at compile
time, hence resulting in optimal code size.

3 Operational Principle

Roughly spoken, the operation of the system as a
whole can be summarized as following:

o Initially, all tasks have to be made known to the
kernel by means of registering their root func-
tions.

o The kernel is to be fired up, the tick timer be-
comes started, and the first task is starting to
execute.

o Once a timer interrupt occurs, the currently run-
ning task becomes frozen and another one be-
comes activated.

Basically that’s everything. The details are some-
what more tricky, of course.

3.1 Context Saving/Restoring

The basic question coming up is: How we can freeze
and later on resume a task? For simple designs with
interrupt routines, an interrupt routine needs to save
all processor registers that it is using throughout its
execution, and later on restores these registers im-
mediately before returning back to the regular code.

In that sense, the "regular code” is the one and only
task.

When we want to switch between multiple tasks it
is not sufficient to just keep the CPU registers of an
interrupted task in mind. Instead, the whole state
needs to be considered.

The state of a task consists of:

o all relevant CPU registers.
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o the stack carrying vital function flow information
(return addresses etc.) as well as possibly local
variables

o the heap that is used for more or less static vari-
able space allocation

Switching the processor from one task state to an-
other task state is generally referred as context
switch.

For processor architectures providing virtual mem-
ory support such a context switch with regard to the
stack and heap can be mostly reduced to an exchange
of the page tables. Some processors do even support
multiple register banks that eliminate the need to
safe most of the CPU registers to a certain extend.

Many of these features are usually not (yet) available
in tiny micro controllers. So all of this work needs to
be done manually.

What is playing a little bit into our hand is the fact
that the whole firmware is to be compiled as a single
project. In the particular case of the SDCC all local
variables of all functions will be located either on one
global heap or on the stack. Effectively, this elimi-
nates the need to exchange the heap when switching
between tasks.

For this 8051-based implementation there has been
made the restriction that the stack is at most 128
bytes in size and is located in internal RAM from
0x80 — OxFF. All relevant registers that belong to a
task’s state will be also put onto the stack. In order
to freeze the state of a task the whole stack resp. the
used area of the stack needs to saved somewhere. So
there are needed 128 bytes of context memory per
task.

3.2 Scheduling Strategy

The scheduling strategy, i.e. the mechanism to an-
swer the question ”Which one of the tasks is to get
the CPU next?” has been laid out as a very sim-
ple round-robin strategy without any priorities. So
the available processing time usually becomes evenly
distributed across all tasks. ”Usually”, because ev-
ery task has the capability to suspend itself for a
certain time. This will be discussed later on.

3.3 Tick Timer / Time Slice Length

Another aspect of a multi tasking kernel that is spe-
cially important with regard to real time require-
ments is the length of a time slice. The shorter the
time slice, the more often the scheduler is called and
the more often different tasks will get some CPU
time. A logical drawback from this is that the smaller
the time slice the more CPU time will be spent for
switching between tasks.

Because the requirements for the time slice length
might be different for different applications, its se-

lection has been made adjustable. In the particular
case of the initial FX2LP reference implementation
the time slice can be adjusted in steps of one millisec-
ond from 1ms to 16ms, 32ms, or 65ms (depending on
the selected CPU clock frequency).

3.4 Additional Gimmicks

Although the explained goal was an absolute reduced
function set of the kernel, there have been added a
few useful add—ons.

3.4.1 CPU Clock Selection

The Cypress FX2LP can run at 12MHz, 24MHz, or
48MHz. The frequency to be used as regular operat-
ing frequency can be selected via #define and hence
becomes fixed at compile time.

3.4.2 Dynamic Frequency Reduction

Energy can be saved when the clock frequency be-
comes reduced. When all tasks have nothing to do
and are sleeping, the clock frequency can be reduced
without any impact on overall performance.

For this Cypress FX2LP implementation the clock
can be reduced from 48MHz or 24MHz down to
12MHz.

Unfortunately, timers inside the FX2LP (including
the timer used for the kernel tick timer) are fed by
the CPU clock. As a result, switching between fre-
quencies is associated with minor inaccuracies in the
timing. In cases where these inaccuracies are prob-
lematic or clock switching is not desired at all, the
dynamic clock reduction can be disabled at compile
time. This also saves a few bytes of code.

In case the regular operating frequency is already
12MHz, the switching code won’t be included auto-
matically.

3.4.3 Sleep Functionality

Sometimes it is useful to put a task to sleep for a
certain time. So there is a kernel function available
that can be called in order to put the calling task to
sleep for a given number of kernel ticks or time slices.

3.4.4 Suspend Functionality

There is also the capability for a task to suspend itself
without a dedicated suspend time. Instead, the task
will become rescheduled at the next occasion.

Such a capability is useful for communication among
application tasks, or in general when a task needs
to wait for a specific event (polling). In such a case
it is usually better for the task to release the CPU,
hence giving other tasks a chance to get some CPU
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time. This is important because one of the other
tasks might be responsible for generating the awaited
event. Without the capability for a task suspend,
the task would poll for the event until the end of the
time slice and many CPU time would have been just
wasted.

3.4.5 Kernel Tick Counter Retrieval

The kernel is keeping an internal 16 bit tick counter
that is incremented with every kernel tick timer in-
terrupt. An application task can fetch the current
counter value and evaluate it. This feature can be
used for simple time measurements. A typical appli-
cation is the detection of timeout conditions.

3.4.6 Optional Kernel Semaphore Support

The Kernel is providing support for semaphores as a
primitive for inter process communication (IPC). Be-
cause this support increases the kernel code size quite
a lot (about 90 bytes have been observed), kernel
semaphore support can be optionally enabled with a
simple #define.

3.4.7 Critical Section Support

More than one task accessing dedicated resources is
a common scenario. Imagine two tasks that write
logging messages into a serial console or access data
in one EEPROM.

Dealing with these issues has been addressed by the
support of so—called Mutexes, an abbreviation for
mutual exclusion. Mutexes are application—defined.
A single mutex is associated with a certain unique
resource. Retrieving (request for entering a critical
section) or releasing (leave the critical section) a mu-
tex is handled by small macros.

These macros make use of kernel semaphores in case
their support has been enabled. When no kernel
semaphores are available, other code will be auto-
matically used. Then, semaphores will be handled
completely at the application level. While this is
functioning identically from a semantic point of view,
it can cause some side effects such as formally unnec-
essary context switches.

3.4.8 Task Synchronization Support

Another common situation is the need for synchro-
nization between two or more tasks. l.e. one task
needs to wait until another task reached a certain
point of its execution.

There is provided a simple mechanism where a task
is blocking its further execution once it reached a
certain point. This point is called Barrier.

Other tasks or some independent interrupt service
routine might clear that barrier so that the waiting

task can continue its operation. While passing this
cleared barrier, it will become set automatically so
that the task will be blocked again when reaching
that point in future.

Similarly to mutexes, barriers are supported by
macros that make either use of the kernel semaphores
or are handled completely at application level.

4 Implementation Details

4.1 General Structure

A broad schematic view of the kernel is given in figure
1.

There are shown the vital functions (by means of C
functions) of the kernel. Actually, these are almost
all functions of the kernel.

The figure also shows execution times of various func-
tions. These times apply for the Cypress FX2LP
with the following assumptions:

e The CPU clock is running fixed at 48MHz. For
24MHz and 12MHz it is ok to multiply the times
by 2 resp. 4.

e There is no clock frequency switching enabled.

o The so—called stretch—value for accesses to exter-
nal memory is set to zero, meaning that no ex-
tra instruction cycles are inserted when accessing
external memory. Notice that external memory
also refers to the 16kB of memory included in the
FX2LP!

o Kernel semaphore support has been disabled.

More about the timing will be discussed later in sec-
tion 5.

As it can be seen, there are two ways how the kernel
can be entered. One is a more or less direct way
by calling either sleep() or suspend(). Because of
the requirement for a preemptive multi tasking the
kernel can be also entered through the tick timer
interrupt.

The individual steps when a tick timer interrupt oc-
curs can be roughly summarized as following;:

1. Immediately after entering timer2_interrupt ()
vital CPU register contents are put onto the
stack.

2. The kernel tick counter becomes incremented.
3. schedule() is entered.

4. The next task to be scheduled will be determined
using a simple round-robin mechanism.

5. There are three cases:

(a) It turns out that no task is runnable. In
this case the state of the current task will be
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direct/cooperative
Kernel Calls

indirect/preemptive Kernel Calls

(Timer Interrupt)

timer2_interrupt()

5.33us
+ 4.67us per Task
(worst)

sleep() suspend()

1.17us 3.42us

if state is

schedule() to be saved

3.58us
+ 2.33ps per Task
(worst)

save_current_state()

3.08ps + 0.75us/Byte
(97.59pus / 15.08us)

if no task is runnable

if a task switch is needed

restore_state_and_

if no task switch resume_task()

is needed

3.5us + 0.75us/Byte
(98us / 15.5ps)

i

start_idle_task()

resume_task()

2.67us

i

enter_active_task()

0.92us (worst)

Fig. 1: Basic Structure of the Kernel System
(Times relate to FX2LP at fixed 48MHz and zero stretch for external memory)

saved into its specific context memory by call-
ing save_current_state() and schedule()
is left towards start_idle_task(), where a
dedicated idle task will be entered.

(b) Another task than the currently ac-
tive one is to receive some CPU time
next. Here the current state will be
saved as well and the kernel proceeds with
restore_state_and_resume_task(). There,
the stack will be restored with the information
stored in the context memory of the according
(next) task before it will be resumed.

(¢) The same task that has been interrupted is
due to keep the CPU because no other task is
runnable. So there are no task context opera-

tions necessary and the flow can continue with
resume_task().

6. In resume_task() the registers will be restored
with the values that have been previously saved
on the stack. Then the CPU will be effectively
handed over to the task. This effectively happens
in enter_active_task().

The flow in case of the direct kernel calls via sleep ()
or suspend() is more or less self-explaining. As it
can be seen, sleep() is effectively making use of
suspend (), while additionally preparing a sleep tick
timer for the calling task. Essentially, suspend() is
putting the current values of all relevant CPU reg-
isters onto the stack in the same way as it is done
in timer2_interrupt(). So from point of view of
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6 An Ultra Small Real Time Multi Tasking Kernel for Embedded Applications

schedule() and all remaining functional blocks in
the flow it does not matter whether the kernel has
been cooperatively entered or preemptively via tick
timer interrupt.

It should be noted that from a technical point of view
all functional blocks that are visible in figure 1 have
been implemented as C functions. However, it is
obviously mostly pointless to consider them as func-
tions but merely as routines. For instance it is obvi-
ous that schedule() is not calling resume_task().
When schedule() is left towards resume_task(),
the flow will never return back to schedule(). An
exception is save_current_state().

Most of these functional blocks are treated as C func-
tions with the intention of having a structured code.
But they are entered not by calling them but by di-
rectly jumping into them. Of course, sleep() and
suspend () as well as all other kernel functions that
are externally available have to be called normally.

4.2 Task State and Context Memory

It has been already described that the state of a task
consists of its stack contents and some CPU registers.
What are the registers of interest here?

e The general accumulator ACC.
e The program status word PSW.

o The so—called data pointer DPTR consisting of the
two 8 bit halfs DPL and DPH.

o The special register B that is used for some arith-
metic operations.

o The eight general purpose registers RO — R7.
o The (soft) base pointer register BP.
o The stack pointer SP.

e The current program address of the task repre-
sented by PCL and PCH (not directly accessible as
registers).

For a few of these registers there need to be added
some more words.

« In the particular case of the Cypress FX2LP there
is support for two data pointers DPTRO and DPTR1.
The SDCC is not aware of the second data pointer
and does not make implicit use of it. Therefore
it is not considered as part of the task state. In
case an application is making use of both data
pointers, the second data pointer as well as the
selection register (DPS) need to be handled too.

o The 8051 architecture is supporting four register
banks for RO — R7. The currently active set can
be chosen via control bits within PSW. The SDCC
as of version 2.9.0 does not make implicit use of
this feature and does not alter the according bits
within PSW. The kernel assumes that only the very
first register bank is used and accordingly safes

only these registers. In case an application is
making use of multiple register banks, the ker-
nel needs to be extended by also handling these
register banks. Although this is not a big deal, it
costs additional time and space.

e In case the SDCC has been advised to generate
reentrant code for functions, especially when the
compiler option --stack-auto is used, the pa-
rameter passing for function calls as well as lo-
cal variables of functions will be allocated on the
stack. This is a common mechanism that is not to
be discussed here. But for this mechanism there
is a so—called base pointer, or BP required. Be-
cause the usage of BP within an application is very
likely, this register (RAM location, actually) will
be saved as well.

o Important: Depending on certain 8051 deriva-
tives and application requirements there might be
also other registers that need to be saved (for in-
stance auto pointer registers etc.). That should
be checked in detail then! If additional reg-
isters are used, their save/restore handling needs
to be added to the according kernel routines.

Due to reasons of simplicity, all registers are saved
onto the stack. So after saving them, the stack can
be considered as a complete representation of the
according task state.

Because the maximum stack size is assumed to be
128 bytes, there need to be reserved 128 bytes per
task. Figure 2 illustrates the structure of such a task
state data set.

Figure 2 should be mostly self-explaining. Just be-
fore the task is calling the kernel or a tick timer in-
terrupt is to occur, the stack pointer is at a position
T_SP!. Then the current program counter will be au-
tomatically put onto the stack (PCL and PCH). Finally
all remaining registers are saved by the kernel onto
the stack.

When the kernel stores the current stack contents
into the context memory, it just copies the relevant
(used) data —i.e. from the beginning of the stack up
to including offset T_SP + 16. Copying only relevant
data saves plenty of time, as the stack is usually used
just fractionally and there’s a lot of unused space.

The very last byte of the task state structure is used
to store the stack pointer itself. Of course, due to the
dynamic nature of the stack the stack pointer itself
needs to be stored at a fixed location. Although it
could be also stored at a separate location, the last
task state structure offset is a good place because in
this implementation of the kernel the last two stack
bytes cannot be used due to technical reasons.

So overall the maximum stack size is 126 bytes. For
the application tasks it can be stated that they can
fill the stack with up to 126 — 16 = 110 bytes.

LActually T_SP + 0x80, because the stack is starting at ad-
dress 0x80.
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saved Stack Pointer
unused

0x7F| T SP + 16
Ox7E

0x7D remaining (free)
Stack Space
(untouched by
Suspend/Resume)
T SP + 16 BP
R7
R6
R5
R4
R3 Stack Area used
by the Kernel for
R2 . o
saving Application
R1 Task Registers
RO (normally 14 Bytes)
B
DPH
DPL
PSW
ACC
T SP + 2 PCH Return Address written by
PCL Call or Interrupt
(Task SP) T_SP
Stack Area used
by Application
Task
0x00

Fig. 2: Structure of a frozen Task State

Note: In case the application firmware is making use
of other interrupts apart from the tick timer inter-
rupt of the kernel, there is less stack space available
for the task — depending on the needs of the inter-
rupt service routine(s).

Note: The SDCC has the capability of dealing with
a second ”soft” stack allocated in external memory
that is used for function parameter passing and local
variables of functions. This feature can be enabled
via the ——xstack compiler option (refer to according
SDCC documentation [2]). The kernel in its current
version does not support this external stack. Con-
sequently, making use of this feature will result in a
crashing or unpredictable firmware behavior!

The context memory itself is located in external
memory. Per default in case of the Cypress FX2LP
it has been placed at the very end of the integrated
external memory. The definition of the context mem-
ory address has been made in a dynamic way so that
it becomes adjusted automatically depending on the
number of tasks. As there are needed 128 bytes
per task, for an exemplary task count of 4 the to-
tal context memory is 512 bytes in size and extends
from 0x3D00 — Ox3FFF. This needs to be taken into
account when the firmware code is making explicit
use of external memory or is having the compiler
to allocate memory in external memory. Especially
with respect to the latter one, the ——xram-loc and

--xram-size compiler options need to be set accord-
ingly so that the compiler does not place other data
across the context memory.

4.3 Scheduling Details

As it has been mentioned earlier, a plain and sim-
ple round-robin scheduling scheme is used. This is
achieving a fair and easily predictable distribution
of the CPU time across all tasks. Technically this
has been implemented by a simple method of walk-
ing through the task indices. The next task that
is runnable will be scheduled then. I.e. when cur-
rently task with index N has been interrupted or
suspended, the scheduler is checking for task NV + 1,
then N+2, and so on, before starting over with index
0 again. So it might be well possible that the same
task N will be scheduled in case there is no other
task runnable. This method is just fine for a small
number of tasks this kernel will be very likely faced
with.

In case there is no task runnable at all the idle task
will become activated. This is the case when it turns
out that even the task that just has been suspended
is not runnable.

Although this mechanism is very simple, there are
some technical pitfalls requiring additional and not
so obvious precautions to preserve a flawless and fair
scheduling.

Because the kernel is not reentrant, the timer inter-
rupt needs to be disabled when the kernel is entered
via either sleep() or suspend(). l.e. interrupting
the kernel code by itself must be avoided.

Such a temporary tick timer interrupt disabling will
also induce a small jitter into the regular scheduling
interval, but that’s not the point.

What can happen in such a scenario is best explained
by having a look at a small example. This example
is illustrated by figure 3.

The following things happen in this example:

o At a certain point in time task 1 suspends itself.

o While the kernel is active with processing the sus-
pend request the next tick timer interrupt occurs.

o Because the tick timer interrupt has been dis-
abled, it does not become effective yet.

o The kernel normally proceeds with its activities
and is about to activate task 2 as next.

o Just before task 2 is about to continue its opera-
tion, the tick timer interrupt becomes re—enabled.

« Because there is still a tick timer interrupt pend-
ing, the kernel is re—entered immediately through
the interrupt without having executed a single in-
struction of task 2.

o The kernel (in wake of having activated task 2 last
time by) proceeds normally, preemptively sus-

i tal

Dig
EHERMEE

31st December 2009
© Digital Force / Mario Trams



8 An Ultra Small Real Time Multi Tasking Kernel for Embedded Applications

Lost Task Activation!

Task 2 Task 3
Task 1 about to be will be
Suspend activated activated

Timer Timer
Interrupt  Interrupt
becomes
effective

Fig. 3: An example of a lost task activation scenario

pends task 2 again, and activates task 3.

So the activation of task 2 has been effectively lost
in that case.

Although this might appear uncritical because task 2
very likely receives the CPU next time by, it poses a
violation for real time requirements. And even more
worse, it can lead to a complete starvation of a single
task so that it never becomes activated. Such a case
can be constructed easily. Imagine two tasks, where
one task ”accidently” suspends itself always just a
moment before the tick timer interrupt occurs. Here
the other task will never receive a single instruction
cycle of CPU time. Such a scenario must be avoided
by design.

A simple method has been integrated to cancel these
situations. That is, whenever the kernel is entered
via suspend() (and hence also via sleep()) the
scheduler becomes disabled for the next forced kernel
activation through a tick timer interrupt.

The drawback of this solution is that a task might be
active for almost up to two consecutive time slices.
Though, this does not affect worst case reaction
times for the overall design. But most importantly,
the scenario that a task can starve without having a
chance to do anything against it has been eliminated.

4.4 Semaphore Support

Semaphores represent an important primitive that
is to be used for implementing higher—level synchro-
nization mechanisms such as mutexes and barriers
(see below).

The kernel in its initial revision presented herein
is providing support for simple binary semaphores.
I’'m not going to describe all the formal details of a
semaphore here. If interested, refer to general oper-
ating systems literature.

The semantics behind a binary semaphore is quite
simple: At any given time, only one process can
“own” this semaphore. Or in other words: A
semaphore can be ”acquired” exactly once at a time.

When it’s coming down to the processor instruction
level, acquiring a semaphore needs to be carried out
as an atomic operation. Otherwise it might occur
that more than one task can have one and the same
semaphore at a time. This would result in troubles,
of course.

There are two supported semaphores variants: Ap-
plication level or kernel supported.

For the application level variant, the mechanism em-
ployed for acquiring a semaphore has been imple-
mented as a simple spin—lock. This is implemented
as a macro as shown in listing 1.

1 (#define ACQUIRE_.SEMAPHORE (SEMAPHORE) \ )
2 DISABLE_TICK_TIMER_INTERRUPT; \
3 while (SEMAPHORE — SEMAPHORE_.OCCUPIED) { \
4 suspend (); \
5 DISABLE_TICK_TIMER_INTERRUPT; \
61 }i\
7 SEMAPHORE = SEMAPHORE_OCCUPIED; \
8 ENABLE_TICK_TIMER_INTERRUPT;
L J

Listing 1: Semaphore Acquire Macro
(Application Level)

As it can be seen, there is made a check whether
the semaphore to be acquired is already occupied by
somebody else or not. When it is in use currently, the
task will suspend itself. Doing so is very sensible, as
the semaphore needs to be released by another task.
When the task that wants to acquire the semaphore
does not suspend itself, it is not giving another task
the chance to release the semaphore for the remain-
der of the current time slice. Hence CPU time is just
wasted.

Once the semaphore appears to be not occupied any
more, the task is marking it "occupied”, and hence
has got it now.

To make this process atomic, the kernel tick timer
interrupt becomes disabled temporarily. Disabling
and re—enabling the tick timer interrupt is done with
internal macros here. It should be noted that it
is needed to disable the tick timer interrupt after
suspend () has been called. This is important, be-
cause the tick timer interrupt will be inherently en-
abled by the kernel after a task resume operation.

The disadvantage of such an application level
semaphore handling is that it essentially implies an
active polling by the task itself. That is, eventually
the task needs to be activated over and over again
until the semaphore is free. This involves lots of con-
text switches which are quite time consuming.
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An Ultra Small Real Time Multi Tasking Kernel for Embedded Applications 9

To overcome this situation there has been inte-
grated an optional mechanism for semaphore sup-
port through the kernel. In this case there will be
called a kernel function acquire_semaphore () when
a semaphore is to be acquired. In case the specified
semaphore is not occupied, the calling task won’t
be suspended and the function is returning imme-
diately. Otherwise the kernel internally marks that
the calling task is waiting for the given semaphore to
be free. Within the upcoming subsequent schedul-
ing decisions (inside schedule()) there is made an
additional check whether a task is waiting for a
semaphore and whether this semaphore is free. Only
when the semaphore is free it will be marked ”occu-
pied” again and the according task will resume. Else
the task will be kept in suspend.

When a semaphore is to be released, this can be eas-
ily done by changing the value of the according vari-
able appropriately. There are no special precautions
needed. So this is just a simple assignment.

The kernel semaphore support has been made op-
tional because it is increasing the kernel code size by
around 90 bytes (checked with SDCC 2.9.0). How-
ever, it should be noted that each time a macro is
instantiated for acquiring a semaphore within the ap-
plication level this costs 19 bytes of code, whereas
calling the kernel costs just 10 bytes (including pa-
rameter passing and register saving). So when there
are more than 10 occasions in the application where
a semaphore is to be acquired, it is generally better
to make use of the kernel semaphores from this point
of view.

Application level semaphores have been based on sin-
gle bits by making use of the bit—addressable memory
range feature of the 8051. Kernel semaphores, how-
ever, are based on whole bytes located within the in-
ternal RAM of the 8051. Although a single bit would
be just fine, the 8051 unfortunately does not support
indirect addressing of the bit—addressable memory
range. Furthermore, kernel level semaphore support
requires additional space of internal RAM (one byte
per task) that is needed to store the information for
which semaphore a task is waiting for.

Note: There is a potential risk that tasks starve un-
der certain conditions. I.e. they will never ultimately
get the semaphore. Although this is a very unlikely
scenario, this might be addressed in a future release
of the kernel that is implementing a ”first come, first
serve” policy for semaphores.

4.5 Synchronization Support Macros

Building upon the semaphores (either application or
kernel level) there are provided a few macros that are
intended for some basic support for what is known
from regular operating systems as inter process com-
munication, or IPC. These macros do not provide
any real IPC mechanism, but they provide the ba-
sic synchronization/handshake primitives needed to

implement them.

These are two things: Mutexes and barriers. They
are shortly described in the following subsections.

4.5.1 Critical Section (Mutex)

Whenever multiple tasks make use of some common
resource, their accesses need to be interlocked from
each other. Simple examples for such a resource are
memory locations used to exchange data between
tasks, or an EEPROM controller that is used by mul-
tiple tasks for storing some data into a common ex-
ternal EEPROM.

Figure 4 illustrates a simple example for two tasks
sharing a critical section.

Task 1 Task 2
Enter |
| Enter
Critical :
Section .
- blocked
Leave .| _ _ _ _______._
Critical
Section
Leave
y

Fig. 4: An example for a Critical Section

When task 1 wants to enter the critical section this
request can be permitted immediately. When task 2
wants to enter the critical section this cannot be per-
mitted instantly because task 1 is still within the crit-
ical section. Hence task 2 needs to take care about
this and cannot enter the critical section. Instead
it needs to wait until task 1 is leaving the critical
section (at earliest).

The implementation of the macros to be used for
entering and leaving a critical section are shown in
listing 2.

#define ENTER_CRITICAL_SECTION (MUTEX) \
ACQUIRE_SEMAPHORE (MUTEX)

#define LEAVE_CRITICAL_SECTION (MUTEX) \
RELEASE_SEMAPHORE (MUTEX)

NG VR

Listing 2: Critical Section Macros

As it can be seen, the mutex handling macros just
make proper use of a semaphore. It is required that
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10 An Ultra Small Real Time Multi Tasking Kernel for Embedded Applications

the mutex resp. semaphore is marked to be free ini-
tially. This is automatically achieved by using a pro-
vided macro for the definition of the mutex.

Important: Care must be taken to not make use
of critical sections from within an interrupt service
routine!

4.5.2 Barrier

Another useful synchronization primitive is a bar-
rier. A barrier can be used to instruct a task to
not pass a certain point of execution until there is
not given a ”go” from another task. When the task
passed the cleared barrier, the barrier becomes set
automatically.

Notice that a barrier in such explicit sense is not
common for regular operating systems. It is merely
indirectly present there.

A simple example illustrating the semantics is given
by figure 5.

Task 1 Task 2

Barrier set

| Check_Barrier

- blocked

. Barrier cleared

Clear_Barrier |

Barrier set

\

Fig. 5: Barrier Illustration

A semaphore as basic element suits such a bar-
rier very well. That is, the function for acquir-
ing a semaphore serves as the function for checking
whether a barrier can be passed or not. The function
for releasing a semaphore serves as function for clear-
ing the barrier. Consequently, the according macro
definitions are looking as shown in listing 3.

#define WAIT_FOR_BARRIER(BARRIER) \
ACQUIRE_SEMAPHORE (BARRIER)

#define CLEAR_.BARRIER(BARRIER) \
RELEASE_SEMAPHORE (BARRIER)

=W N =

Listing 3: Barrier Macros

In contrast to a mutex, the semaphore for a barrier
needs to be marked ”occupied” initially. This will be

done automatically during the definition of a barrier.

Notice that CLEAR_BARRIER() is the only synchro-
nization macro that is allowed to be used from within
an interrupt service routine. This makes it possible
to keep a regular application thread sleeping until it
is getting awakened indirectly through an interrupt
service routine.

4.6 Foreign Interrupts

The kernel itself is making use of timer 2 and its
associated interrupt as tick timer. Of course, most
firmware designs will need their own interrupt service
routines for special purposes.

Formally, such ”foreign” interrupt service routines
can coexist besides the kernel. There is just one im-
portant requirement: An interrupt service routine
must never get interrupted by the kernel resp. its
tick timer interrupt service routine. Vice versa there
is no problem.

Bad things happen whenever the kernel interrupts
another interrupt service routine. This is, because an
interrupt routine will always run within the context
of the task that has been interrupted by it. When
this routine becomes interrupted by the kernel and
the kernel carries out a context switch, this partly
executed interrupt will be suspended as well. Be-
sides the fact that this delays the completion of this
interrupt routine, which is usually not wanted, this
causes some other confusions as well.

A simple solution for this issue is to give the ker-
nel tick timer interrupt the lowest priority among all
available interrupts.

The FX2LP implements a default (natural) prioriti-
zation of all interrupt sources, where the priority of
the kernel tick timer interrupt is 6 (0 is the highest
and 12 the lowest priority). So there are 6 more in-
terrupt sources (interrupts 7-12) that still have an
higher priority. The FX2LP does also implement a
high and a low priority group for interrupts. Within
these groups, the natural prioritization applies. Per
default all interrupts are assigned to the low priority
group. So all that needs to be done is to put the 6 in-
terrupts with a naturally lower priority into the high
priority group. Then the kernel tick timer interrupt
has the lowest priority and it is impossible that it
can interrupt another interrupt service routine.

Exactly this method is employed by the kernel.

Note: Placing interrupts 7-12 into the high priority
group makes them automatically higher prioritized
than interrupts 0-4. In case this is not desired, the
application might also place interrupts 0—4 into the
high priority group. This would match the default
(natural) overall prioritization except that the kernel
tick timer interrupt has the lowest priority.

Note: Applications that have other (incompatible)
requirements for the interrupt prioritization cannot
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be directly used. Other mechanisms need to be im-
plemented here. l.e. context switches need to be
avoided somehow in the critical cases.

5 Timing Aspects

Going back to figure 1 on page 5, we can derive some
information about the impact of the kernel with re-
gard to the processing overhead caused by it as well
as the real time capabilities of a firmware system.

Again, notice that the times shown in figure 1 are
based on a Cypress FX2LP running at 48MHz. In
case of a 24MHz or 12MHz clock the times can be
simply multiplied by two resp. four.

In the specific case of the FX2LP, accesses to ex-
ternal data memory ("external” by means of 8051
terminology) can be stretched by up to 7 additional
instruction cycles. As the context memory is due
to reside in external memory, this can have a ma-
jor impact especially on the save_current_state()
and restore_state_and_resume_task() functional
blocks. Here we assume a stretch value of zero. For
other stretch values the timings need to be reconsid-
ered, which is not very difficult.

Yet another minor impact on the timing is the fact
whether the dynamic clock frequency reduction fea-
ture is used or not. Using this feature is adding some
additional time for the needed code as well as the fact
that a few instructions in timer2_interrupt () will
be executed at the low frequency before the clock is
set to its regular value. For the following consider-
ations we assume that the clock frequency remains
constant at 48MHz.

5.1 Kernel Overhead

Under "normal” conditions we can assume that there
are a couple of tasks running pseudo—concurrently.
Every time a tick timer interrupt occurs a complete
context switch is to be carried out. The question is,
how much of the expensive CPU time is consumed
by the kernel and hence is not available for the actual
application.

It is rather easy to calculate the time that will be
spent within the kernel in worst case. In some cases
the time depends on the number of tasks. For an
exemplary typical system we can assume a value of
4 here, for instance. The resulting worst case time
in micro seconds is 5.33 +4 - 4.67 + 3.58 +4 - 2.33 +
97.59 + 98 4+ 2.67 + 0.92 = 236.09. Or in general:

kerneltime,q, = 208.09us + TASK_COUNT - Tus

So under worst conditions one has to assume that
approx. 236us or 0.236ms will be spent inside the
kernel for each tick timer interrupt in this example
(kerneltimenq, = 0.236ms).

The two major contributors to this time are the rou-
tines for saving and restoring the task states, each
having a worst case run time of almost 100us. The
run times of these routines heavily depends on the
number of stack bytes that are to be handled. The
minimum number of stack bytes is induced by the
kernel mechanism and equals 16 (2 for the return ad-
dress into the task and 14 for saved register values;
refer also back to figure 2 on page 7).

In a typical system the stack won’t be fully utilized.
Though this depends on the application, of course.
A stack usage of say 50 bytes seems to be quite a
good value for a small task consisting of some levels
of function calls and perhaps a few stack—based local
variables. So it should be safe to estimate the typical
kernel overhead at a value of say 150us or 0.15ms
(kerneltimey,, = 0.15ms) per tick timer interrupt.

Based on these values the kernel overhead expressed
in percent can be easily expressed as a function of
the time slice that has been chosen:

kerneltime - 100[%]
timeslice

kerneloverhead|%] =

So with a time slice of 1ms (1kHz tick timer rate)
the kernel overhead is with 23.6% (worst case) resp.
15% (typical) rather high. For a time slice of 10ms
(100Hz tick timer rate) it is dropping to a rather
irrelevant 2.36% resp. 1.5%.

5.2 Real Time Considerations

Answering the question ”When a certain task will be
scheduled next in worst case?” is rather easy.

In the most simple behavior the task scheduling will
be on a solely preemptive basis. That is, no task will
suspend itself and it is just the tick timer interrupt
that dictates when a task will become suspended and
another one becomes resumed. Such an exemplary
scenario is illustrated in figure 6 assuming a number
of four tasks.

So it can be stated that any task is receiving CPU
time every timeslice - N units, where N is the num-
ber of tasks. Furthermore, the CPU time every
task receives within a period of timeslice - N equals
timeslice—kerneltime. Assuming an exemplary sys-
tem with 4 tasks and a time slice of 10ms, the fol-
lowing characteristics can be derived:

o Every task receives CPU time every 40ms.

o Every task will be scheduled 25 times per second.

e For each awake-period every task can get the
CPU for at least 9.764ms, or for 9.85ms typically.

o Within one second, every task receives a total
CPU time of at least approx. 244ms, or approx.
246ms typically.

Under conditions when tasks make use of the suspend
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Preemptive Scheduling Cycle (worst case)

— o
X S
[Z2] [Z]
© ©
[ [
T T+1 T+2
Time Slice

y

Task 4
Task 1

'Eme
T+5 [TicK]

T+3

T+4

Fig. 6: A trivial task scheduling example with 4 tasks
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Fig. 7: A task scheduling example with 4 tasks including suspends

functionality, things are looking a little bit more com-
plicated as illustrated exemplary in figure 7.

What is optically visible from figure 7 is that the
CPU time each task receives over a given time span
might be not equal from task to task and can signif-
icantly differ from each other. So, as shown in the
example, across a period of four time slices, tasks 1
and 2 receive much more CPU time than tasks 3 and
4.

Whenever a tasks is suspending itself it does agree to
7give away” the remaining time of the current time
slice. Taking the worst case conditions into account,
this task cannot expect to get back the CPU prior to
a time of timeslice - N units (where N is again the
number of tasks). In the particular example shown in
figure 7 task 1 is rescheduled earlier within less than
timeslice-3 units. However, this is just because tasks
3 and 4 were so ”glad” and have suspended theirself.

Notice that in the example shown in figure 7 the
kernel does not switch to task 3 at tick 7'+ 1 and
keeps task 2 active. Similarly task 1 is kept active at
tick T'+ 3 instead of switching to task 2. The reason
for this behavior has been already explained back in
section 4.3.

6 Kernel API and Sources

6.1 Kernel API Description

The following text gives a short description for all
the relevant kernel functions that are to be (or can
be) used by the application firmware.

These are just 5 resp. 6 functions in total.

6.1.1 initialize_task_context()

Synopsis:

void initialize_task_context(
unsigned char task_id,
unsigned char initial_sleep,
void *task_pointer

)

initialize_task_context () is to be called for each
task that is to be registered within the kernel. This
function needs to be called for each task one after
each other. There are three parameters:

« task_id specifies the unique identifier of the task
starting at 1. The largest allowable value is
specified by the global constant TASK_COUNT (see
kernel_setup.h later). Notice that for simplic-
ity there is not made any boundary check for
this parameter! Specifying values larger than
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TASK_COUNT will silently fail with unpredictable
system crashes.

e initial_sleep specifies the number of time
slices that will be (at least) waited before the task
becomes started. If this feature is not needed a
value of 0 is just fine.

o task_pointer is a simple pointer to the root
function of the according task.

Overall, initialize_task_context() is preparing
the context memory of the given task properly.
When the task becomes activated for the first time
the function that has been specified through the
task_pointer argument will start executing.

Note: All tasks defined by TASK_COUNT need to be
registered! I.e. when TASK_COUNT is 4, there need
to be registered tasks with ids 1, 2, 3, and 4. Not
less, not more, and no other ids. In case one task
id is missing, this task will start up with an unini-
tialized context memory entry which results in an
unpredictable behavior. Although it would not be
difficult to add according error handling into the ker-
nel, it has been not done for the sake of a small code
footprint.

6.1.2 start_kernel()

Synopsis:
void start_kernel(void)

This function first initializes some data structures re-
quired by the kernel and is setting up the CPU clock
frequency to the value that has been defined in the
header file containing various fixed kernel settings
(also refer to the example application that is shown
later in this document).

After the tick timer interrupt has been set up it pro-
ceeds directly with the scheduler and the kernel es-
sentially comes to life.

start_kernel () has no arguments and it will never
return. Therefore calling start_kernel() is the
last operation to be done within the application
firmware startup code. Code that is following
start_kernel() won’t ever become executed!

Note: Prior to calling start_kernel () the firmware
needs to enable interrupts globally. The kernel itself
will only enable its own timer interrupt, which is
timer 2 in that case.

Note: Before calling start_kernel () all tasks need
to be registered via initialize_task_context().

6.1.3 suspend()
Synopsis:

void suspend(void)

By calling suspend () a task can put down its activ-
ities before this will be done preemptively at the end
of the current time slice. Hence a task can give other
tasks a chance to do some work instead of just burn-
ing CPU time. Depending on the situation, the task
might not actually become suspended. This is the
case when no other task is runnable momentarily.

In a worst case scenario and when all other tasks are
busy, the time to wakeup can be specified as:

suspendtime,,q., = timeslice - TASK_COUNT

6.1.4 sleep()

Synopsis:
void sleep(unsigned char ticks)

sleep() can be used by tasks to self-suspend them
for the given number of kernel ticks. So the absolute
sleep time depends on the selected kernel tick time
resp. time slice.

A value of zero for ticks has no effect resp. has the
same effect as a call of suspend().

As the 8 bit argument restricts the maximum number
of sleep ticks to 255, longer periods can be achieved
by calling sleep() multiple times within a loop or
SO.

Notice that the sleep time is associated with a cer-
tain jitter. Under worst case conditions the actual
minimum and maximum sleep times are as follows:
sleeptimey, = timeslice - (ticks — 1)

sleeptime,q. = timeslice - (ticks + TASK_COUNT — 1)

6.1.5 get_kernel tick()
Synopsis:
int get_kernel_tick(void)

This is just a helper function that needs to be used
for retrieving the so—called kernel tick counter. Call-
ing this function does not enter the kernel itself.

The kernel tick counter is a simple 16 bit integer that
increments with every tick timer interrupt. When
passing the value of 65535 it reverts back to 0.

Evaluating this counter is useful for implementing
timeout detection mechanisms in software.

6.1.6 acquire_semaphore()

Synopsis:
void acquire_semaphore (

idata unsigned char *semaphore

)
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acquire_semaphore() is only present in case the
kernel is compiled with semaphore support. As ar-
gument it receives a pointer to a semaphore vari-
able that needs to be located within the internal
RAM of the 8051. In case the specified semaphore is
free, acquire_semaphore () will return immediately
while marking the semaphore to be occupied. Else
it will cause a suspend of the calling task and will
return when the semaphore is getting free some time
in the future.

Notice that acquire_semaphore () is usually not di-
rectly used by application code. Instead, it is indi-
rectly used by higher-level macros that provide mu-
tex and barrier support.

6.1.7 Mutex Macros

Before making use of a mutex, it needs to be globally
defined via the following macro:

DEFINE_MUTEX (MUTEX)

The parameter MUTEX is an identifier for the accord-
ing mutex. Defining a mutex automatically does de-
clare it to be ”free” or "not occupied”.

The mutex can be used by the application by instan-
tiating the following macros:

ENTER_CRITICAL_SECTION(MUTEX)
LEAVE_CRITICAL_SECTION(MUTEX)

Notice that these macros must not be used within
interrupt service routines!

6.1.8 Barrier Macros

The barrier handling is much like the mutex han-
dling. A barrier needs to be defined with

DEFINE_BARRIER (BARRIER)

The parameter BARRIER is an identifier for the ac-
cording barrier. Defining a barrier automatically
does declare it to be ”set”. I.e. a task reaching it
won'’t pass it.

The barrier can be used by instantiating the follow-
ing macros:

WAIT_FOR_BARRIER(BARRIER)
CLEAR_BARRIER (BARRIER)

Notice that per barrier there has to be exactly
one task and no more that is making use of
WAIT_FOR_BARRIER(), while multiple tasks includ-
ing application interrupt service routines can apply
CLEAR_BARRIER() for one and the same barrier.

6.2 Kernel Source Structure

The kernel consists of the following files:

e kernel.c
This is the main implementation file.

e kernel.h
kernel.h is the main header file that is to be in-
cluded by the application firmware. It contains
prototype declarations of ”public” kernel func-
tions.

e kernel_definitions.h
This header file contains various definitions and
macros.

e kernel_setup.h

In kernel_setup.h several settings regarding the
kernel operation are to be made. Normally this
is the only file that is to be modified according to
the application firmware needs.

These things will be explained along with the ex-
ample firmware description shown in the next sec-
tion.

7 Example Application

In this section I want to present a small exemplary
firmware that demonstrates the ease of use of the
kernel and most of its features. It is part of the kernel
distribution and so to speak the default application.

This application firmware is not of practical use,
but merely academic. The things realized by the
firmware:

o There are two tasks 1 and 2.
o Task 1 inverts bit 4 of port C every approx. 0.5s.

e Task 2 inverts bit 5 of port C every time it is
instructed from task 1 to do so.

o Task 1 is telling task 2 to do its job every 10
inversions of bit 4 of port C.

e There is an independent timer interrupt that in-
verts bit 0 of port E regularly by making use of
timer 0.

o The system clock is to be set to 48MHz.

As both tasks 1 and 2 access port C, this access needs
to be protected by a critical section. Because criti-
cal sections cannot be used from within an interrupt
service routine, the interrupt routine cannot access
port C as well. For this example application this is
no problem as the interrupt service routine is access-
ing the independent port E.

7.1 Setting up the Kernel

First of all, some of the vital kernel settings need to
be made. These things are to be done within the
header file kernel_setup.h. Its contents for this
exemplary firmware are shown in listing 4.

The CPU frequency is set to 48MHz (line 37). The
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28 |#ifndef _KERNEL_SETUP_H__
29 |#define __KERNEL_SETUP_H__

31 | // Definition of the maximal CPU clock frequency to be used.
Notice that the frequency might get
is idle and this

32 | // can be either 12MHz, 24MHz or 48MH:z.
33 | // forced down to 12MHz in case the system

For the FX2LP this

feature has been

34 | // enabled (see MINIMIZE_.CLOCK_-WHEN_IDLE below ).

35 | //#define CPU.FREQ.MHZ 12
36 | //#define CPU.FREQ.MHZ 24
37 |#define CPU_FREQ.MHZ 48

39 | // The KERNEL_TICK_TIME_MILLISECONDS constant specifies

the so—called

40 | // tick time of the operating system in milliseconds.

41 | // Notice that there are need to be paid attention to maximum values
42 | // depending on the selected frequency:

43 | // — 12MHz: maximum permitted kernel tick time is 65ms

44 | // — 24MHz: maximum permitted kernel tick time is 32ms

45 | // — 48MHz: maximum permitted kernel tick time is 16ms

46 |#define KERNEL_TICK_TIME_MILLISECONDS 10

48 | // Definition whether the CPU frequency

49 | // possible frequency (12MHz) in case the system is
in case changing the frequency is

50 | // Remove/comment this definition
51 | // to be omitted.

52 | //#define MINIMIZE_.CLOCK_WHEN_IDLE 1

is to be set to the

lowest
idle .

54 | // Definition whether kernel semaphores are to be used or not.

55 | // Remove/comment this definition
56 |#define USE_KERNEL_SEMAPHORES 1

58 | // Number of tasks excluding the
59 |#define TASK_.COUNT 2

61 | // Definition
62 | // ATTENTION:

63 | // at a 128 byte boundary

64 | // (i.e. 0xXX00 or 0xXX80)!I!!
65 | // We set the base

66 | // the external memory included

67 | // on the number of tasks.
Notice that we do not have to
69 this one has got no context memory.

idle task.

include the

to disable kernel semaphore support.

of the base address for the context memory area.
Due to code optimization task_context_memory MUST start
in external memory

in a flexible manner occupying the upper range of
in the FX2LP. So the exact base depends

idle task here, because

70 |#define CONTEXT. MEMORY BASE 0x4000 — 128 % TASK_COUNT

72 |#endif // __KERNEL_SETUP_H._.
.

Listing 4: kernel_setup.h

kernel tick time is set to a value of 10ms here (line
46).

The frequency reduction feature has been turned off
(line 52). This is, because we want to have the
application—specific timer interrupt rate at a con-
stant level. When we allow a frequency switching,
this would also affect the timer rate which is not de-
sired.

Kernel semaphore support is turned on (line 56).
The number of tasks is set to 2 (line 59).

Finally, the address of the context memory location
is defined in line 70. A flexible macro is used here
that is placing the context memory at the very end of
the 16kB of external memory offered by the FX2LP.
So as there are two tasks, the memory from 0x3E00
— Ox3FFF will be utilized. As already described in
section 4.2, the compiler needs to be advised to not
use this range for other data storage.

7.2 Firmware Main Code

The main firmware code is mostly self-explaining
through its extensive comments. Nonetheless it’s
worth some extra words.

The main() function as well as some global defini-
tions are shown in listing 5.
Definitions for the needed mutex as well as for the

barrier by making use of the according macros can
be seen in lines 34 and 38.

In main() first of all the stretch—setting becomes set
to zero (line 54). This is an FX2LP-related feature
that allows to insert wait states during accesses to
external memory.

Next timer 0 is set up (lines 64-78). It will be used
as time base to generate a square wave output at bit
0 of port E.

Then port E is configured properly (lines 82-84).
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-
// Definition of a (global) mutex that is needed by this application

// in order to ensure avoiding "lost updates” for accesses to some
// io port registers.
DEFINELMUTEX( port_access_mutex );

// Definition of a (global) barrier that is needed for the control of
// task 2 through task 1.
DEFINE_.BARRIER(task2_barrier);

// Declaration of some function prototypes.
void timerO_interrupt(void) __interrupt 1;
void taskl(void);
void task2(void);

%/////////////////////////////////////////////////////////////////////////////

main is the initial function that will be entered after a reset
void main(void) {

// Clear bits 2:0 of CKCON in order to select a stretch of 0.

// Note: Per default stretch=1 is selected which is slowing down

// the access of external memory by one instruction cycle.

// Notice that in case of the FX2LP the on—chip 16kB memory is
// also treated as external memory!

CKCON &= "0x07;

// Initialize timer 0 which will be used for generating periodic interrupts.
// This is just for explanatory purposes.

// Timer 0 will be configured as simple 16 bit counter that will generate
// an interrupt every 65536x12 CPU clock cycles (approx. 61Hz for 48MHz).

// TMOD.2 = 0 (Timer 0 is a timer)

// TMOD.1:0 = 01 (Timer 0 in mode 1 — 16 bit timer)
TMOD &= 0xF8; // clear bits 2:0

TMOD |= 0x01; // bits 1:0 = 01 => Timer 0 mode 1

// Clear bit 3 (TOM) of CKCON (Timer 0 uses CLK24/12)
CKCON &= 0xF7;

// Load the initial Timer 0 value.
TLO = O0;
THO = 0;

// Enable Timer 0 interrupt.
IE |= 0x02;

// Enable Timer 0.
TCON |= 0x10;

// Initialize port E and configure bit 0 of port E as output.
PORTECFG = 0x00;

IOE = 0x00;

OEE = 0x01;

// Initialize context data for task 1.
initialize_task_context(1l, 0, (voidx) &taskl);

// Initialize context data for task 2.
initialize_task_context (2, 0, (voidx) &task2);

// Enable global interrupts.
IE |= 0x80;

// Start up the kernel including the registered tasks.

// We will not return from there and this main() function basically
// terminates here.

start_kernel ();

Listing 5: firmare.c (Main Code)
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s N
103 ///////////////////////////////////////////////////////////////////////////////
104 | // timerO_interrupt is the interrupt service routine for timer 0. It just
105 | // inverts bit 0 of port E.

106 | //
107 | // Notes:
108 | // — Kernel functions (i.e. sleep() or suspend()) cannot be called from
109 | // interrupt routines!
110 | // — No synchronization macros except CLEAR.BARRIER() must be used within an
111 | // interrupt service routine!
112 | void timerO_interrupt(void) __interrupt 1 {
113
114 // Just invert bit 0 of port E.
115 IOE "= 0x01;
116
17 |}
Listing 6: firmare.c (Application—specific Interrupt Service Routine)
119 ///////////////////////////////////////////////////////////////////////////////
120 | // task is a simple task that is preparing port and toggles its
121 | // state regularly. Every 10 toggles there is cleared a barrler for task 2,
122 | // so that task 2 can proceed its work.
123 | void taskl(void) {
124
125 unsigned char counter = O0;
126
127 // First we initialize port C accordingly.
128 // Although this is not really necessary, because the register change
129 // operations are carried out atomically by the 8051, we protect
130 // the access by an according mutex. So this does also illustrate the
131 // mutex operation for demonstrational purposes.
132 // Notice, that for simplicity we put all three initialization steps
133 // within a single critical section.
134 ENTER_CRITICAL_SECTION( port_access_mutex);
135 PORTCCFG &= OxEF; // clear bit 4 (make port C / bit 4 normal 10 pin)
136 10C &= OxEF; // clear bit 4 (set port C / bit 4 zero)
137 OEC |= 0x10; // set bit 4 (make port C / bit 4 output)
138 LEAVE_CRITICAL_SECTION( port_access_mutex);
139
140 // The actual task consists of an endless loop.
141 do {
142
143 // Put the task to sleep for a dedicated (minimal) time. The time is to be
144 // specified in kernel ticks. The time a kernel tick takes has to be specified
145 // in kernel_setup.h. With a sleep time of 50 and a kernel tick time of 10ms,
146 // this equals a total time of 0.5s.
147 sleep (50);
148
149 // Invert port C / bit 4. Again, we protect this operation by the
150 // according mutex, although this is not really necessary, because
151 / the inversion will be carried out by the 8051 as an atomic operation.
152 ENTER_CRITICAL_SECTION( port_access_mutex);
153 I0C "= 0x10;
154 LEAVE_CRITICAL_SECTION( port_access_mutex );
155
156 // Increment a counter.
157 // Every time it reaches a value of 10, it is set back to zero and a
158 // barrier evaluated by task2 becomes cleared.
159 counter4++;
160 if (counter = 10) {
161 counter = 0;
162 CLEAR_BARRIER(task2_barrier);
163 1
164
165 } while (1);
166
167 |}
L J
Listing 7: firmare.c (Task 1)
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169 ///////////////////////////////////////////////////////////////////////////////
170 | // task2() just inverts bit 5 of port whenever it receives a "go” from
171 | // task 1. This illustrates the barrler functionality .

172 | void task2(void) {

173

174 // Similar to task 1, initialize bit 5 of port C.

175 ENTER_CRITICAL_SECTION( port_access_mutex);

176 PORTCCFG &= OxDF; // clear bit 5 (make port C / bit 5 normal 10 pin)
177 10C &= O0xDF; // clear bit 5 (set port C / bit 5 zero)

178 OEC |= 0x20; // set bit 5 (make port C / bit 5 output)

179 LEAVE_CRITICAL_SECTION( port_access_mutex );

180

181

182 // The actual task consists of an endless loop.

183 do {

184

185 // We go to sleep here and wait for the barrier task2_barrier to be cleared
186 // by task 1.

187 WAIT_FOR_BARRIER(task2_barrier);

188

189 // When the barrier has been cleared, we invert bit 5 of port C.
190 ENTER_CRITICAL_SECTION( port_access_mutex );

191 I0C "= 0x20;

192 LEAVE_CRITICAL_SECTION ( port_access_mutex );

193

194 // Then we will repeat the loop. |.e. we wait until the barrier has been
195 // cleared again.

196

197 |} while (1);

198

199 |}

Listing 8: firmare.c (Task 2)

Now the actual kernel-related work is carried out. In
lines 88 and 91 the contexts of the two involved tasks
become initialized. The global interrupt enable flag
becomes set as well (line 94). Enabling interrupts is
important as this is not done within the kernel.

Finally, in line 99 start_kernel() is called which
rounds up the main() function. Code that follows
calling start_kernel() would never get executed.

The interrupt service routine for timer 0 is shown by
listing 6. It just inverts bit 0 of port E. That’s all.

Listing 7 shows the code of the function that is rep-
resenting task 1.

Task 1 has a local counter variable as it needs to
know when to signal task 2 to proceed.

In lines 134-138 the according fraction of port C be-
comes initialized. Although not really necessary, the
accesses of the port C registers are wrapped within a
critical section. Notice that one would actually put
the port C initialization into the main() function.
However, this has not been done here for purposes of
illustration.

The actual work of task 1 is carried out within an
endless loop that spans across lines 141-165.

Within the loop, first of all task 1 puts itself to sleep
for 50 kernel ticks. As the kernel tick time has been
set to 10ms (see listing 4), the absolute sleep time is
500ms or 0.5s. Notice that this time is subject to a

small jitter as described earlier.

After task 1 is waking up again, it inverts bit 4 of port
C (lines 152-154). This inversion is also wrapped
within a critical section, because formally task 2
can simultaneously access port C as well. Actually,
this will never be a problem, as the toggle-operation
will be translated into an atomic read—modify—write.
Nonetheless, the critical section is used in order to
be formally correct and to illustrate the use of it.

Once the primary work is done the local counter be-
comes incremented and checked whether it reached
10 already. If so, it becomes reset to zero and the
barrier that is used for the control of task 2 becomes
cleared.

The initial code of task 2 (listing 8) is similar to that
of task 1. There is just made the proper configura-
tion of bit 5 of port C.

Likewise to task 1, the main part of task 2 is done
within an endless loop (lines 183-197).

In the beginning, task 2 is waiting for the barrier to
be cleared. Once the barrier has been cleared by task
1, task 2 will wake up at the next occasion. Then it
inverts bit 5 of port C and the loop is starting over
again.
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7.3 Checklist

As a reminder, here are a few points that should be
checked in order to avoid troubles by means of saving
days to weeks of endless debugging. Not taking care
of these points can result in a very unpredictable
behavior and in worst case very sporadic failures that
are very difficult to locate.

o Do more than one of my tasks make use of other
CPU registers than those ones described in sec-
tion 4.27 If so, the kernel needs to be extended
accordingly.

e Is my firmware not compiled with the --xstack
compiler option? Using an external stack is not
yet supported by the kernel!

o Does the position of the context memory in exter-
nal memory (CONTEXT_MEMORY_BASE) as defined
in kernel_setup.h not overlap with the space
for xdata variables? The latter space is defined
through the compiler options --xram-loc and
-—Xram-size.

e Do I have declared all functions and their sub
functions that can be called by different tasks as
reentrant? Is the same true for third—party li-
braries that I’'m using?

e Do I make use of critical sections for accesses to
resources used by more than one task?

8 Availability

The source code for the multi tasking kernel is
freely available through www.digital-force.net. It is
provided together with the exemplary firmware de-
scribed herein (including a small make file), which
is an easy starting point for developing own applica-
tions.

There are no specific prerequisites to compile the ex-
ample except for the availability of the common make
system and an installed SDCC. As of this writing,
the example has been verified to work correct when
compiled with SDCC version 2.9.0.

9 Licensing/Legal Issues

This piece of software (including the source code) is
provided as it is without being bound to any spe-
cific licensing model. It can be used and/or modi-
fied without any notice for any applications includ-
ing commercial ones. There is no warranty that it is
free of errors. You are using it on your own risk.

Furthermore notice that I'm not providing official
support for this project. In case you encountered
a problem with it or you discovered a bug, you are
welcome to report this. But I can’t promise that I've
got the time to have a look at it.

10 Summary and Future Work

There has been presented a small but powerful multi
tasking kernel. It does by far not replace larger op-
erating system kernels, but it is also not intended
to do so. Instead, it is removing much of the bur-
den from the firmware designer to deal with complex
issues of pseudo—concurrency within his application,
while the extra overhead is kept at a comparably low
level.

One of the most important differences when com-
pared to regular operating systems is its source—
based nature. That is, it cannot be compiled as a
stand—alone system and then plugged together with
the actual application code by means of linking ob-
ject files. This is because all of its parameterization
is done on a source—level. Although it is well possible
to change that situation, this would yield a further
increase of the kernel overhead. Considering the fact
that the kernel is supposed to be open—source any-
way, this extra overhead can be saved.

For the near future there is no dedicated work
planned. Although there are many things one can
imagine that could be improved or extended, the ker-
nel will more and more loose one of its advantages:
Its simplicity and its small size.

Anyway, possibly there will be some future enhance-
ments and ports to other processor architectures.
This will depend on pending projects and their re-
quirements.
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